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Abstract
We prove the existence of small amplitude, (2π/ω)-periodic in time solutions of com-
pletely resonant nonlinear wave equations with Dirichlet boundary conditions for any
frequency ω belonging to a Cantor-like set of asymptotically full measure and for a new
set of nonlinearities. The proof relies on a suitable Lyapunov-Schmidt decomposition
and a variant of the Nash-Moser implicit function theorem. In spite of the complete
resonance of the equation, we show that we can still reduce the problem to a finite-
dimensional bifurcation equation. Moreover, a new simple approach for the inversion
of the linearized operators required by the Nash-Moser scheme is developed. It allows
us to deal also with nonlinearities that are not odd and with finite spatial regularity.
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1. Introduction
We consider the completely resonant nonlinear wave equation{

utt − uxx + f (x, u) = 0,

u(t, 0) = u(t, π) = 0,
(1)

where the nonlinearity

f (x, u) = ap(x)up + O(up+1), p ≥ 2,

is analytic in u but is only H 1 with respect to x.
We look for small amplitude, (2π/ω)-periodic in time solutions of equation (1)

for all frequencies ω in some Cantor set of positive measure, actually of full density
at ω = 1.

Equation (1) is an infinite-dimensional Hamiltonian system possessing an elliptic
equilibrium at u = 0. The frequencies of the linear oscillations at zero are ωj = j ,
∀j = 1, 2, . . . , and therefore satisfy infinitely many resonance relations. Any solution
v =∑j≥1 aj cos(j t + θj ) sin(jx) of the linearized equation at u = 0,{

utt − uxx = 0,

u(t, 0) = u(t, π) = 0,
(2)

is 2π-periodic in time. For this reason, equation (1) is called a completely resonant
Hamiltonian partial differential equation (PDE).

Existence of periodic solutions close to a completely resonant elliptic equilibrium
for finite-dimensional Hamiltonian systems has been proved in the celebrated theorems
of Weinstein [27], Moser [21], and Fadell and Rabinowitz [13]. The proofs are based
on the classical Lyapunov-Schmidt decomposition that splits the problem into two
equations: the range equation, solved through the standard implicit function theorem,
and the bifurcation equation, solved via variational arguments.

For proving the existence of small amplitude periodic solutions of completely
resonant Hamiltonian PDEs like (1), two main difficulties must be overcome:
(i) a “small denominators” problem that arises when solving the range equation;
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(ii) the presence of an infinite-dimensional bifurcation equation: Which solutions
v of the linearized equation (2) can be continued to solutions of the nonlinear
equation (1)?

The “small denominators” problem (i) is easily explained: the eigenvalues of the
operator ∂tt − ∂xx in the spaces of functions u(t, x), (2π/ω)-periodic in time and such
that, say, u(t, ·) ∈ H 1

0 (0, π) for all t , are −ω2l2 + j 2, l ∈ Z, j ≥ 1. Therefore, for
almost every ω ∈ R, the eigenvalues accumulate to zero. As a consequence, for most
ω, the inverse operator of ∂tt − ∂xx is unbounded, and the standard implicit function
theorem is not applicable.

The appearance of “small denominators” is a common feature of Hamilto-
nian PDEs. This problem was first solved by Kuksin [17] and Wayne [26] using
Kolmogorov-Arnold-Moser (KAM) theory (other existence results of quasi-periodic
solutions with KAM theory were obtained, e.g., in [9], [19], [23]; see also [18] and
references therein).

In [11] Craig and Wayne introduced for Hamiltonian PDEs the Lyapunov-Schmidt
reduction method and solved the range equation via a Nash-Moser implicit function
technique. The major difficulty concerns the inversion of the linearized operators
obtained at any step of the Nash-Moser iteration because the eigenvalues may be arbi-
trarily small. (This is the “small denominators” problem (i).) The Craig-Wayne method
to control such inverses is based on the Frölich-Spencer technique in [14] and (in the
wave equation with Dirichlet boundary conditions) works for nonlinearities f (x, u)
which can be extended to analytic, odd, periodic functions so that the Dirichlet problem
on [0, π] is equivalent to the 2π-periodic problem within the space of all odd functions.
A key property exploited in this case is that the off-diagonal terms of the linearized
operator (seen as an infinite-dimensional matrix in Fourier basis) decay exponentially
fast away from the diagonal. At the end of the Nash-Moser iteration, due to the “small
denominators” problem (i), the range equation is solved only for a Cantor set of
parameters.

We mention that the Craig-Wayne approach has been extended by Su [25] to some
case where the nonlinearity has only low Sobolev regularity (for periodic conditions)
and by Bourgain [6], [7] to find also quasi-periodic solutions.

The previous results apply, for example, to nonresonant or partially resonant
Hamiltonian PDEs like utt − uxx + a1(x)u = f (x, u), where the bifurcation equation
is finite-dimensional (2-dimensional in [11] and 2m-dimensional in [12]). With a
nondegeneracy assumption (“twist condition”) the bifurcation equation is solved in
[11], [12], by the implicit function theorem finding a smooth path of solutions which
intersects transversally, for a positive measure set of frequencies, the Cantor set where
also the range equation has been solved.
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On the other hand, for completely resonant PDEs like (1), where a1(x) ≡ 0, both
small divisor difficulties and infinite-dimensional bifurcation phenomena occur. It was
quoted in [10] as an important problem.

The first existence results for small amplitude periodic solutions of (1) have
been obtained in∗ [20] for the nonlinearity f (x, u) = u3 and in [3] for f (x, u) =
u3 + O(u5), imposing on the frequency ω the strongly nonresonance condition |ωl −
j | ≥ γ /l, ∀l �= j . For 0 < γ < 1/6, the frequencies ω satisfying such a condition
accumulate to ω = 1 but form a set Wγ of zero measure. For such ω’s the spectrum
of ∂tt − ∂xx does not accumulate to zero, and so the “small denominators” problem (i)
is bypassed. Next, problem (ii) is solved by means of the implicit function theorem,
observing that the zeroth-order bifurcation equation (which is an approximation of
the exact bifurcation equation) possesses, for f (x, u) = u3, nondegenerate periodic
solutions (see [22]).

In [4], [5], for the same set Wγ of strongly nonresonant frequencies, existence
and multiplicity of periodic solutions have been proved for any nonlinearity f (u). The
novelty of [4], [5] was to solve the bifurcation equation via a variational principle at
fixed frequency which, jointly with min-max arguments, enables us to find solutions
of (1) as critical points of the Lagrangian action functional. More precisely, the
bifurcation equation is, for any fixed ω ∈ Wγ , the Euler-Lagrange equation of a
reduced Lagrangian action functional which possesses nontrivial critical points of
mountain pass type (see [1]; see also Remark 1.4).

Unlike [3], [4], and [5], a new feature of the results of this article is that the set of
frequencies ω for which we prove existence of (2π/ω)-periodic in time solutions of
(1) has positive measure, actually has full density at ω = 1.

The existence of periodic solutions for a set of frequencies of positive measure
has been proved in [8] in the case of periodic boundary conditions in x and for the
nonlinearity f (x, u) = u3+∑4≤j≤d aj (x)uj , where the aj (x) are trigonometric cosine
polynomials in x. The nonlinear equation utt − uxx + u3 = 0 possesses a continuum
of small amplitude, analytic, and nondegenerate periodic solutions in the form of
traveling waves u(t, x) = δp0(ωt + x), where ω2 = 1 + δ2 and p0 is a nontrivial 2π-
periodic solution of the ordinary differential equation p′′

0 = −p3
0. With these properties

at hand, the “small denominators” problem (i) is solved via a Nash-Moser implicit
function theorem adapting the estimates of Craig and Wayne [11] for nonresonant
PDEs.

Recently, the existence of periodic solutions of (1) for frequencies ω in a set of
positive measure has been proved in [15] using the Lindstedt series method to solve the
“small denominators” problem. The article [15] applies to odd analytic nonlinearities
like f (u) = au3 + O(u5) with a �= 0 (the term u3 guarantees a nondegeneracy

∗Actually, [20] deals with the case of periodic boundary conditions in x (i.e., u(t, x + 2π) = u(t, x)).
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property). The reason that f (u) is odd is because the solutions are obtained as analytic
sine-series in x (see Remark 1.1).

We also quote the recent article [16] on the standing wave problem for a perfect
fluid under gravity and with infinite depth which leads to a nonlinear and completely
resonant second-order equation.

In this article we prove the existence of (2π/ω)-periodic solutions of the com-
pletely resonant wave equation (1) with Dirichlet boundary conditions for a set of
frequencies ω with full density at ω = 1 and for a new set of nonlinearities f (x, u),
including, for example, f (x, u) = u2.

We do not require that f (x, u) can be extended on (−π, π) × R to a function
g(x, u), smooth with respect to u, satisfying the oddness assumption g(−x, −u) =
−g(x, u), and we assume only H 1-regularity in the spatial variable x (see assumption
(H)).

To deal with these cases we develop a new approach for the inversion of the
linearized operators which is different from the one of Craig and Wayne [11] and
Bourgain [6], [7]. Our method (presented in Section 4) is quite elementary, especially
requiring that the frequencies ω satisfy the Diophantine first-order Melnikov nonres-
onance condition of Definition 3.3 with 1 < τ < 2 (see comments regarding the
(P )-equation in Section 1.2.2).

To handle the presence of an infinite-dimensional bifurcation equation (and the
connected problems that arise in a direct application of the Craig-Wayne method; see
Section 1.2.2), we perform a further finite-dimensional Lyapunov-Schmidt reduction.
Under the condition that the zeroth-order bifurcation equation possesses a nondegen-
erate solution, we find periodic solutions of (1) for asymptotically full measure sets
of frequencies.

We postpone to Section 1.2 a detailed description of our method of proof.

1.1. Main result
Normalizing the period to 2π , we look for solutions of{

ω2utt − uxx + f (x, u) = 0,

u(t, 0) = u(t, π) = 0,
(3)

in the Hilbert space

Xσ,s :=
{
u(t, x) =

∑
l∈Z

exp (ilt) ul(x)
∣∣∣ ul ∈ H 1

0

(
(0, π), R

)
, ul(x) = u−l(x), ∀l ∈ Z,

and ‖u‖2
σ,s :=

∑
l∈Z

exp (2σ |l|)(l2s + 1)‖ul‖2
H 1 < +∞

}
.

For σ > 0, s ≥ 0, the space Xσ,s is the space of all even, 2π-periodic in time
functions with values in H 1

0 ((0, π), R) which have a bounded analytic extension
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in the complex strip |Im t | < σ with trace function on |Im t | = σ belonging to
Hs
(
T, H 1

0 ((0, π), C)
)
.

For 2s > 1, Xσ,s is a Banach algebra with respect to multiplication of functions,
namely,∗

u1, u2 ∈ Xσ,s =⇒ u1u2 ∈ Xσ,s and ‖u1u2‖σ,s ≤ C‖u1‖σ,s‖u2‖σ,s .

It is natural to look for solutions of (3) which are even in time because equation (1) is
reversible.

A weak solution u ∈ Xσ,s of (3) is a classical solution because the map x �→
uxx(t, x) = ω2utt (t, x) − f (x, u(t, x)) belongs to H 1

0 (0, π) for all t ∈ T, and hence,
u(t, ·) ∈ H 3(0, π) ⊂ C2([0, π]).

Remark 1.1
Let us explain why we have chosen H 1

0 ((0, π), R) as configuration space instead of
Y := {u(x) =∑j≥1 uj sin(jx)

∣∣∑
j exp(2aj )j 2ρ |uj |2 < +∞} as in [11], [15], which

is natural if the nonlinearity f (x, u) can be extended to an analytic in both variables odd
function. For nonodd nonlinearities f (even analytic), it is not possible, in general, to
find a nontrivial, smooth solution of (1) with u(t, ·) ∈ Y for all t . For example, assume
that f (x, u) = u2. Deriving twice the equation with respect to x and using the fact
that u(t, 0) = 0, uxx(t, 0) = 0, uttxx(t, 0) = 0, we deduce −uxxxx(t, 0) + 2u2

x(t, 0) =
0. Now uxxxx(t, 0) = 0, ∀t , because all the even derivatives of any function in Y

vanish at x = 0. Hence u2
x(t, 0) =0, ∀t . But this implies, using again the equation,

that ∂k
xu(t, 0) = 0, ∀k, ∀t . Hence, by the analyticity of u(t, ·) ∈ Y , u ≡ 0.

The space of the solutions of the linear equation vtt − vxx = 0 which belong to
H 1

0 (T × (0, π), R) and are even in time is

V :=
{
v(t, x) =

∑
l≥1

2 cos(lt)ul sin(lx)
∣∣∣ ul ∈ R,

∑
l≥1

l2|ul|2 < +∞
}
.

V can also be written as

V :=
{
v(t, x) = η(t + x) − η(t − x)

∣∣∣ η ∈ H 1(T, R) with η odd
}
.

We assume that the nonlinearity f satisfies
(H) f (x, u) = ∑k≥p ak(x)uk, p ≥ 2, and ak(x) ∈ H 1((0, π), R) verify∑

k≥p ‖ak‖H 1ρk < +∞ for some ρ > 0.

∗The proof is as in [24], recalling that H 1
0 ((0, π), R) is a Banach algebra with respect to multiplication of

functions.
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THEOREM 1.1
Assume that f (x, u) satisfies assumption (H) and

f (x, u) =


a2u
2 +∑k≥4 ak(x)uk , a2 �= 0,

or

a3(x)u3 +∑k≥4 ak(x)uk , 〈a3〉 := ( 1
π

) ∫ π

0 a3(x) dx �= 0.

Then s > 1/2 being given, there exist δ0 > 0, σ > 0 and a C∞-curve [0, δ0) � δ →
u(δ) ∈ Xσ/2,s with the following properties:
(i) ‖u(δ) − δv‖σ/2,s = O(δ2) for some v ∈ V ∩ Xσ,s , v �= {0};
(ii) there exists a Cantor set C ⊂ [0, δ0) of asymptotically full measure, that is,

satisfying

lim
η→0+

meas(C ∩ (0, η))

η
= 1, (4)

such that, ∀ δ ∈ C, u(δ) is a 2π-periodic, even in time, classical solution of (3)
with, respectively,

ω = ω(δ) =


√
1 − 2δ2

or√
1 + 2δ2 sign〈a3〉.

As a consequence, ∀δ ∈ C, ũ(δ)(t, x) := u(δ)(ω(δ)t, x) is a (2π/ω(δ))-periodic, even
in time, classical solution of equation (1).

By (4) also, the Cantor-like set {ω(δ) | δ ∈ C} has asymptotically full measure at
ω = 1.

Remark 1.2
The same conclusions of Theorem 1.1 hold true also for f (x, u) = a4u

4 + O(u8)
with ω2 = 1 − 2δ6. This was recently proved in [2] as a further application of the
techniques of the present article (see Remark 1.5).

Theorem 1.1 is related to Theorem 1.2 stated in Section 1.2.1.

Remark 1.3
Under the hypotheses of Theorem 1.1 we could also get multiplicity of periodic
solutions as a consequence of Theorem 1.2 and Lemmas 6.1 and 6.3. More precisely,
there exist n0 ∈ N and a Cantor-like set C of asymptotically full measure such that
∀δ ∈ C, equation (1) has a

(
2π/(nω(δ))

)
-periodic solution un for any n0 ≤ n ≤ N(δ)

with limδ→0 N(δ) = ∞ (un is, in particular, (2π/ω(δ))-periodic). This can be seen as
an analogue for (1) of the well-known multiplicity results of Weinstein [27], Moser
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[21], and Fadell and Rabinowitz [13], which hold in finite dimension. Multiplicity of
solutions of (1) was also obtained in [5] but only for the zero measure set of strongly
nonresonant frequencies Wγ .

1.2. The Lyapunov-Schmidt reduction
Instead of looking for solutions of (3) in a shrinking neighborhood of zero, it is a
convenient device to perform the rescaling

u → δu, δ > 0,

obtaining {
ω2utt − uxx + δp−1gδ(x, u) = 0,

u(t, 0) = u(t, π) = 0,
(5)

where

gδ(x, u) := f (x, δu)

δp
= ap(x)up + δap+1(x)up+1 + · · · .

To find solutions of (5), we try to implement the Lyapunov-Schmidt reduction accord-
ing to the orthogonal decomposition

Xσ,s = (V ∩ Xσ,s) ⊕ (W ∩ Xσ,s),

where

W :=
{
w =
∑
l∈Z

exp(ilt) wl(x) ∈ X0,s

∣∣∣w−l = wl and

∫ π

0
wl(x) sin(lx) dx = 0, ∀l ∈ Z

}
. (6)

(The lth time-Fourier coefficient wl(x) must be orthogonal to sin(lx).)
Looking for solutions u = v + w with v ∈ V , w ∈ W , we are led to solve

the bifurcation equation (called the (Q)-equation) and the range equation (called the
(P )-equation)− (ω2 − 1)

2
�v = δp−1�V gδ(x, v + w), (Q)

Lωw = δp−1�Wgδ(x, v + w), (P )

(7)

where

�v := vxx + vtt , Lω := −ω2∂tt + ∂xx,
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and �V : Xσ,s → V , �W : Xσ,s → W denote the projectors, respectively, on V

and W .

1.2.1. The zeroth-order bifurcation equation
In order to find nontrivial solutions of (7), we impose a suitable relation between the
frequency ω and the amplitude δ. (As δ → 0, ω must tend to 1.)

The simplest situation occurs when

�V

(
ap(x)vp

) �≡ 0. (8)

Assumption (8) amounts to require that

∃v ∈ V such that
∫




ap(x)vp+1(t, x) dt dx �= 0, 
 := T × (0, π), (9)

which is verified if and only if ap(π − x) �≡ (−1)pap(x) (see Lemma A.1).
When condition (8) (equivalently, (9)) holds, we set the frequency-amplitude

relation

ω2 − 1

2
= ε, |ε| := δp−1,

so that system (7) becomes{−�v = �V g(δ, x, v + w), (Q)

Lωw = ε�Wg(δ, x, v + w), (P )
(10)

where

g(δ, x, u) := s∗gδ(x, u) = s∗(ap(x)up + δap+1(x)up+1 + · · · )
and

s∗ := sign(ε).

When δ = 0 (and hence, ε = 0), system (10) reduces to w = 0 and the zeroth-order
bifurcation equation

− �v = s∗�V

(
ap(x)vp

)
(11)

which is the Euler-Lagrange equation of the functional �0 : V → R

�0(v) = ‖v‖2
H 1

2
− s∗
∫




ap(x)
vp+1

p + 1
dx dt, (12)

where ‖v‖2
H 1 := ∫



v2

t + v2
x dx dt .
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By the mountain pass theorem in [1], taking

s∗ :=
{

1, that is, ε > 0, ω > 1, if ∃ v ∈ V such that
∫



ap(x)vp+1 > 0,

−1, that is, ε < 0, ω < 1, if ∃ v ∈ V such that
∫



ap(x)vp+1 < 0,
(13)

there exists at least one nontrivial critical point of �0 (i.e., a solution of (11)).
We say that a solution v ∈ V of equation (11) is nondegenerate if zero is the only

solution of the linearized equation at v (i.e., ker �′′
0(v) = {0}).

If condition (8) is violated (as for f (x, u) = a2u
2), the right-hand side of equation

(11) vanishes. In this case the correct zeroth-order nontrivial bifurcation equation
involves higher-order nonlinear terms, and another frequency-amplitude relation is
required (see Section 1.2.3).

For the sake of clarity, we develop all the details when the zeroth-order bifurcation
equation is (11). In Section 6.2 we describe the changes for dealing with other cases.

We can also look for (2π/n)-time-periodic solutions of the zeroth-order bifurca-
tion equation (11). (They are particular 2π-periodic solutions.) Let

Vn := {v ∈ V
∣∣ v is (2π/n)-periodic in time

}
= {v(t, x) = η(nt + nx) − η(nt − nx)

∣∣ η ∈ H 1(T, R) with η odd
}
. (14)

If v ∈ Vn, then �V (ap(x)vp) ∈ Vn, and the critical points of �0|Vn
are the solutions

of equation (11) which are (2π/n)-periodic. Also, �0|Vn
possesses a mountain pass

critical point for any n (see [5]).
We say that a solution v ∈ Vn of (11) is nondegenerate in Vn if zero is the only

solution in Vn of the linearized equation at v (i.e., ker �′′
0|Vn

(v) = {0}).

THEOREM 1.2
Let f satisfy (8) and (H). Assume that v ∈ Vn is a nontrivial solution of the zeroth-order
bifurcation equation (11) which is nondegenerate in Vn.

Then the conclusions of Theorem 1.1 hold with ω = ω(δ) = √
1 + 2s∗δp−1.

1.2.2. About the proof of Theorem 1.2
Sections 2 – 5 are devoted to the proof of Theorem 1.2. Without genuine loss of
generality, the proof is carried out for n = 1, and we explain why it works for n > 1
as well at the end of Section 5.

The natural way to deal with (10) is to solve first the (P )-equation (e.g., through
a Nash-Moser procedure) and then to insert the solution w(δ, v) in the (Q)-equation.
However, since V is infinite-dimensional here, a serious difficulty arises: if v ∈ V ∩
Xσ0,s , then the solution w(δ, v) of the range equation, obtained with any Nash-Moser
iteration scheme, will have a lower regularity (e.g., w(δ, v) ∈ Xσ0/2,s). Therefore in
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solving next the bifurcation equation for v ∈ V , the best estimate we can obtain is
v ∈ V ∩ Xσ0/2,s+2, which makes the scheme incoherent. Moreover, we have to ensure
that the zeroth-order bifurcation equation (11) has solutions v ∈ V which are analytic,
a necessary property to initiate an analytic Nash-Moser scheme. (In [11], [12], these
problems do not arise since the bifurcation equation is finite-dimensional.)

We overcome these difficulties thanks to a reduction to a finite-dimensional bifur-
cation equation on a subspace of V of dimension N independent of ω. This reduction
can be implemented, in spite of the complete resonance of equation (1), thanks to the
compactness of the operator (−�)−1.

We introduce the decomposition V = V1 ⊕ V2, where{
V1 := {v ∈ V

∣∣ v(t, x) =∑N
l=1 2 cos(lt)ul sin(lx), ul ∈ R

}
,

V2 := {v ∈ V
∣∣ v(t, x) =∑l≥N+1 2 cos(lt)ul sin(lx), ul ∈ R

}
.

Setting v := v1 + v2 with v1 ∈ V1, v2 ∈ V2, system (10) is equivalent to
−�v1 = �V1g(δ, x, v1 + v2 + w), (Q1)

−�v2 = �V2g(δ, x, v1 + v2 + w), (Q2)

Lωw = ε�Wg(δ, x, v1 + v2 + w), (P )

(15)

where �Vi
: Xσ,s → Vi (i = 1, 2), denote the orthogonal projectors on Vi (i = 1, 2).

Our strategy to find solutions of system (15) (and hence, to prove Theorem 1.2)
is the following.

Solution of the (Q2)-equation. We solve first the (Q2)-equation, obtaining v2 =
v2(δ, v1, w) ∈ V2 ∩ Xσ,s+2 when w ∈ W ∩ Xσ,s , by the contraction mapping theorem,
provided that we have chosen N large enough and 0 < σ ≤ σ small enough, depending
on the nonlinearity f but independent of δ (see Section 2).

Solution of the (P )-equation. Next, we solve the (P )-equation, obtaining w =
w(δ, v1) ∈ W ∩ Xσ/2,s by means of a Nash-Moser type implicit function theorem
for (δ, v1) belonging to some Cantor-like set B∞ of parameters (see Theorem 3.1).

Our approach for the inversion of the linearized operators at any step of the
Nash-Moser iteration is different from the Craig-Wayne-Bourgain method. We de-
velop u(t, ·) ∈ H 1

0 ((0, π), R) in time-Fourier expansion only, and we distinguish the
diagonal part D = diag{Dk}k∈Z of the operator that we want to invert. Next, using
Sturm-Liouville theory (see Lemma 4.1), we diagonalize each Dk in a suitable basis
of H 1

0 ((0, π), R) (close to, but different from (sin jx)j≥1). Assuming a first-order
Melnikov nonresonance condition (see Definition 3.3), we prove that its eigenvalues
are polynomially bounded away from zero, and so we invert D with sufficiently good
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estimates (see Corollary 4.2). The presence of the off-diagonal Toepliz operators
requires us to analyze the “small divisors”: for our method, it is sufficient to prove
that the product of two “small divisors” is larger than a constant if the corresponding
singular sites are close enough (see Lemma 4.5). This holds true if the Diophantine
exponent τ ∈ (1, 2) by the lower bound of Lemma 4.3. Moreover, for τ ∈ (1, 2), the
nonresonance Diophantine conditions are particularly simple (see Definition 3.3 and
the Cantor set B∞ in Theorem 3.1). This restriction for the values of the exponent τ

simplifies also the proof of Lemma 4.9, where the loss of derivatives due to the “small
divisors” is compensated by the regularizing property of the map v2.

Solution of the (Q1)-equation. Finally, in Section 5 we consider the finite-dimensional
(Q1)-equation.

We could define a smooth functional � : [0, δ0) × V1 → R such that any critical
point v1 ∈ V1 of �(δ, ·) with (δ, v1) ∈ B∞ (≡ the Cantor-like set of parameters for
which the (P )-equation is solved exactly) gives rise to an exact solution of (3) (see
[4]). Moreover, it would be possible to prove the existence of a critical point v1(δ) of
�(δ, ·), ∀δ > 0 small enough, using the mountain pass theorem in [1].

However, since the section Eδ := {v1 | (δ, v1) ∈ B∞} has gaps (except for δ in
a zero measure set; see Remark 1.4), the difficulty is to prove that (δ, v1(δ)) ∈ B∞
for a large set of δ’s. Although B∞ is in some sense a large set, this property is not
obvious. In this article we prove that it holds at least if the path (δ �→ v1(δ)) is C1 (see
Proposition 3.2) and so intersects transversally the Cantor set B∞.

This is why we require in Theorem 1.2 nondegenerate solutions of the zeroth-
order bifurcation equation (11). This condition enables us to use the implicit function
theorem, yielding a smooth path (δ → v1(δ)) of solutions of the (Q1)-equation.

Remark 1.4
The section Eδ has no gaps if and only if the frequency ω(δ) = √

1 + 2s∗δp−1 belongs
to the uncountable zero measure set Wγ := {|ωl−j | ≥ γ /l, ∀j �= l, l ≥ 0, j ≥ 1} of
[3]. This explains why in [4], [5] we had been able to prove the existence of periodic
solutions for any nonlinearity f , solving the bifurcation equation with variational
methods.

We lay the stress on the fact that the parts on the (Q2)- and (P )-equations do not use the
nondegeneracy condition. We hope that we will be able to improve our results relaxing
the nondegeneracy condition in a subsequent work, using the variational formulation
of the (Q1)-equation and results on properties of critical sets for parameter-depending
functionals.
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1.2.3. About the proof of Theorem 1.1
To deduce Theorem 1.1 when f (x, u) = a3(x)u3 + O(u4) and 〈a3〉 �= 0, we just have
to prove that the zeroth-order bifurcation equation∗

− �v = s∗�V

(
a3(x)v3) (16)

possesses, at least for n large, a nondegenerate solution in Vn. Choosing s∗ ∈ {−1, 1}
so that s∗〈a3〉 > 0, this is proved in Lemma 6.1.

In the case f (x, u) = a2u
2 +O(u4), condition (8) is violated because �V v2 ≡ 0,

and we have to use a development in δ of higher order, as in [4]. Imposing in (7) the
frequency-amplitude relation

ω2 − 1

2
= −δ2, (17)

the correct zeroth-order bifurcation equation turns out to be (see Section 6.2)

− �v + 2a2
2�V

(
vL−1(v2)

) = 0, (18)

where L−1 : W → W is the inverse operator of −∂tt + ∂xx . Equation (18) is the
Euler-Lagrange equation of

�0(v) = ‖v‖2
H 1

2
+ a2

2

2

∫



v2L−1v2, (19)

which again possesses mountain pass critical points because
∫



v2L−1v2 < 0, ∀v ∈ V

(see [4]).
The existence of a nondegenerate critical point of (�0)|Vn

for n large enough is
proved in Lemma 6.3. This implies, as in Theorem 1.2, the conclusions of Theorem 1.1.

Remark 1.5
Also, when f (x, u) = a4u

4 + O(u8), condition (8) is violated because �V v4 ≡ 0.
Imposing the frequency-amplitude relation ω2 − 1 = −2δ6, the correct zeroth-order
bifurcation equation turns out to be

− �v + 4a2
4�V

(
v3L−1(v4)

) = 0. (20)

The existence of a solution of (20) which is nondegenerate in Vn for n large enough
is proved in [2]. This implies the conclusions of Theorem 1.1.

∗Note that 〈a3〉 �= 0 implies condition (9) because a3(π − x) �≡ −a3(x), and so �V (a3(x)v3) �≡ 0.
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2. Solution of the (Q2)-equation
The main assumption of Theorem 1.2 says that at least one of the critical points
of �0 defined in (12) or of the restriction of �0 to some Vn, called v, is
nondegenerate. For definiteness, we assume that v is nondegenerate in the whole
space V .

By the regularizing property of

(−�)−1 : V ∩ Hk(
) → V ∩ Hk+2(
), ∀k ≥ 0,

and a direct bootstrap argument, v ∈ Hk(
), ∀k ≥ 0. Therefore∗ v ∈ V ∩ C∞(
).

In the sequel of this article, s > 1/2 is fixed once and for all. We also fix some
R > 0 such that

‖v‖0,s < R. (21)

By the analyticity assumption (H) on the nonlinearity f and the Banach algebra
property of Xσ,s , there is a constant K0 > 0 such that

‖g(δ, x, u)‖σ,s =
∥∥∥∑

k≥p

ak(x)δk−puk
∥∥∥

σ,s
≤
∑
k≥p

‖ak‖H 1δk−pKk−1
0 ‖u‖k

σ,s

≤ C‖u‖p
σ,s

∑
k≥p

‖ak‖H 1 (δK0‖u‖σ,s)
k−p ≤ C ′‖u‖p

σ,s (22)

in the open domain Uδ := {u ∈ Xσ,s | δK0 ‖u‖σ,s < ρ} because the power series∑
k≥p ‖ak‖H 1ρk−p < +∞ by (H). The Nemitsky operator

Xσ,s � u → g(δ, x, u) ∈ Xσ,s

is in C∞(Uδ, Xσ,s). We specify that all the norms ‖ ‖σ,s are equivalent on V1. In the
sequel,

B(ρ, V1) := {v1 ∈ V1

∣∣ ‖v1‖0,s ≤ ρ
}
.

The fact that v ∈ V ∩ Xσ,s for some σ > 0 is a consequence of the following
lemma.

LEMMA 2.1 (Solution of the (Q2)-equation)
There exist N ∈ N+, σ := ln 2/N > 0, δ0 > 0 such that
(a) ∀0 ≤ σ ≤ σ , ∀‖v1‖0,s ≤ 2R, ∀‖w‖σ,s ≤ 1, ∀δ ∈ [0, δ0), there exists a unique

v2 = v2(δ, v1, w) ∈ V2 ∩ Xσ,s with ‖v2(δ, v1, w)‖σ,s ≤ 1 which solves the
(Q2)-equation;

∗The following is true even if ap(x) ∈ H 1((0, π), R) only because the projection �V has a regularizing effect in
the variable x.
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(b) v2(0, �V1v, 0) = �V2v;
(c) v2(δ, v1, w) ∈ Xσ,s+2, the function∗ v2(·, ·, ·) ∈ C∞([0, δ0) × B(2R; V1) ×

B(1; W ∩ Xσ,s), V2 ∩ Xσ,s+2), and Dkv2 is bounded on [0, δ0) × B(2R; V1) ×
B(1; W ∩ Xσ,s) for any k ∈ N;

(d) if, in addition, ‖w‖σ,s ′ < +∞ for some s ′ ≥ s, then (provided δ0 has been
chosen small enough) ‖v2(δ, v1, w)‖σ,s ′+2 ≤ K(s ′, ‖w‖σ,s ′).

Proof
Fixed points of the nonlinear operator N(δ, v1, w, ·) : V2 → V2 defined by

N(δ, v1, w, v2) := (−�)−1�V2g(δ, x, v1 + w + v2)

are solutions of equation (Q2). For w ∈ W ∩ Xσ,s , v2 ∈ V2 ∩ Xσ,s , we have
N(δ, v1, w, v2) ∈ V2 ∩ Xσ,s+2 since g(δ, x, v1 + w + v2) ∈ Xσ,s and because of
the regularizing property of the operator (−�)−1�V2 : Xσ,s → V2 ∩ Xσ,s+2.

(a) Let B := {v2 ∈ V2 ∩ Xσ,s | ‖v2‖σ,s ≤ 1}. We claim that there exist N ∈ N,
σ > 0, and δ0 > 0 such that ∀0 ≤ σ < σ , ‖v1‖0,s ≤ 2R, ‖w‖σ,s ≤ 1, δ ∈ [0, δ0), the
operator v2 → N(δ, v1, w, v2) is a contraction in B; more precisely,
(i) ‖v2‖σ,s ≤ 1 ⇒ ‖N(δ, v1, w, v2)‖σ,s ≤ 1;
(ii) v2, ṽ2 ∈ B ⇒ ‖N(δ, v1, w, v2) − N(δ, v1, w, ṽ2)‖σ,s ≤ (1/2)‖v2 − ṽ2‖σ,s .

Let us prove (i). For all u ∈ Xσ,s , ‖(−�)−1�V2u‖σ,s ≤ (C/(N + 1)2)‖u‖σ,s , and so,
∀‖w‖σ,s ≤ 1, ‖v1‖0,s ≤ 2R, δ ∈ [0, δ0), using (22),

‖N(δ, v1, w, v2)‖σ,s ≤ C

(N + 1)2
‖g(δ, x, v1 + v2 + w)‖σ,s

≤ C ′

(N + 1)2
(‖v1‖p

σ,s + ‖v2‖p
σ,s + ‖w‖p

σ,s)

≤ C ′

(N + 1)2

(
exp (σpN)‖v1‖p

0,s + ‖v2‖p
σ,s + 1

)
≤ C ′

(N + 1)2

(
(4R)p + ‖v2‖p

σ,s + 1
)

for exp (σN) ≤ 2, where we have used the fact that ‖v1‖σ,s ≤ exp (σN)‖v1‖0,s ≤ 4R.
For N large enough (depending on R), we get

‖v2‖σ,s ≤ 1 ⇒ ‖N(δ, v1, w, v2)‖σ,s ≤ C ′

(N + 1)2

(
(4R)p + 1 + 1

) ≤ 1,

∗The formula l ∈ C∞(A, Y ) means, if A is not open, that there is an open neighborhood U of A and an extension
l̃ ∈ C∞(U, Y ) of l.
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and (i) follows, taking σ := ln 2/N . Property (ii) can be proved similarly, and the
existence of a unique solution v2(δ, v1, w) ∈ B follows by the contraction mapping
theorem.

(b) We may assume that N has been chosen so large that ‖�V2v‖0,s ≤ 1/2. Since
v solves equation (11), �V2v solves the (Q2)-equation associated with (δ, v1, w) =
(0, �V1v, 0). Since �V2v = N(0, �V1v, 0, �V2v) and �V2v ∈ B, we deduce �V2v =
v2(0, �V1v, 0).

(c) As a consequence of (ii), the linear operator I −Dv2 N is invertible at the fixed
point of N(δ, v1, w, ·). Since the map (δ, v1, w, v2) �→ N(δ, v1, w, v2) is C∞, by the
implicit function theorem v2 : {(δ, v1, w) | δ ∈ [0, δ0), ‖v1‖0,s ≤ 2R, ‖w‖σ,s ≤ 1} →
V2 ∩Xσ,s is a C∞-map. Hence, since (−�)−1�V2 is a continuous linear operator from
Xσ,s to V2 ∩ Xσ,s+2 and

v2(δ, v1, w) = (−�)−1�V2

(
g(δ, x, v1 + w + v2(δ, v1, w))

)
, (23)

by the regularity of the Nemitsky operator induced by g, v2(·, ·, ·) ∈ C∞([0, δ0) ×
B(2R; V1) × B(1; W ∩ Xσ,s), V2 ∩ Xσ,s+2). The estimates for the derivatives can be
obtained similarly.

(d) Let us first prove the following: if δ‖u‖σ,s is small enough, then

u ∈ Xσ,r ⇒ g(δ, x, u) ∈ Xσ,r , ∀r ≥ s. (24)

We first observe that since r ≥ s > 1/2, for u, v ∈ Hr (R/2πZ), we have ‖uv‖Hr ≤
Cr (‖u‖∞‖v‖Hr + ‖v‖∞‖u‖Hr ). This is a consequence of the Gagliardo-Nirenberg
inequalities. Hence there is a positive constant Kr such that

‖ul‖Hr ≤ Kl−1
r ‖u‖l−1

∞ ‖u‖Hr ≤ Kl−1
r ‖u‖l−1

Hs ‖u‖Hr , ∀u ∈ Hr (R/2πZ), ∀l ≥ 1.

Considering the extension of a function u ∈ Xσ,r to the complex strip of width σ and
using the fact that H 1

0 (0, π) is a Banach algebra, we can derive that ∀r ≥ s, ‖ul‖σ,r ≤
Kl−1

r ‖u‖l−1
σ,s ‖u‖σ,r . Therefore

‖g(δ, x, u)‖σ,r =
∥∥∥∑

k≥p

ak(x)δk−puk
∥∥∥

σ,r
≤ ‖u‖p

σ,r

∑
k≥p

‖ak‖H 1‖(δu)k−p‖σ,r

≤ ‖u‖p
σ,r

[
‖ap‖H 1+

∑
k>p

‖ak‖H 1Ck−p(δ‖u‖σ,s)
k−p−1(δ‖u‖σ,r )

]
<+∞

for δ‖u‖σ,s small enough.
Now, assume that ‖w‖σ,s ′ < +∞ for some s ′ ≥ s. Since v2(δ, v1, w) ∈ Xσ,s

solves equation (23), by a direct bootstrap argument using the regularizing properties
of (−�)−1�V2 : Xσ,r → V2 ∩ Xσ,r+2 and the fact that ‖v1‖σ,r < +∞, ∀r ≥ s, we
derive v2(δ, v1, w) ∈ Xσ,s ′+2 and ‖v2(δ, v1, w)‖σ,s ′+2 ≤ K(s ′, ‖w‖σ,s ′). �
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Remark 2.1
Lemma 2.1 implies, in particular, that the solution v of the zeroth-order bifurcation
equation (11) is not only in V ∩ C∞(
) but actually belongs to V ∩ Xσ,s+2 and
therefore is analytic in t and hence in x.

We stress that we consider as fixed the constants N and σ obtained in Lemma 2.1,
which depend only on the nonlinearity f and on v. On the contrary, we allow δ0 to
decrease in the next sections.

3. Solution of the (P )-equation
By the previous section we are reduced to solve the (P )-equation with v2 =
v2(δ, v1, w); namely,

Lωw = ε�W�(δ, v1, w), (25)

where

�(δ, v1, w)(t, x) := g
(
δ, x, v1(t, x) + w(t, x) + v2(δ, v1, w)(t, x)

)
. (26)

The solution w = w(δ, v1) of the (P )-equation (25) is obtained by means of a
Nash-Moser implicit function theorem for (δ, v1) belonging to a Cantor-like set of
parameters.

We consider the orthogonal splitting W = W (n) ⊕ W (n)⊥, where

W (n) =
{
w ∈ W

∣∣∣ w =
∑

|l|≤Ln

exp(ilt) wl(x)
}
,

W (n)⊥ =
{
w ∈ W

∣∣∣ w =
∑

|l|>Ln

exp(ilt) wl(x)
}
, (27)

and Ln are integer numbers. (We choose Ln = L02n with L0 ∈ N large enough.) We
denote by

Pn : W → W (n) and P ⊥
n : W → W (n)⊥

the orthogonal projectors onto W (n) and W (n)⊥.
The convergence of the recursive scheme is based on properties (P1), (P2), and

(P3).
(P1) (Regularity) �(·, ·, ·, ) ∈ C∞([0, δ0) × B(2R; V1) × B(1; W ∩ Xσ,s), Xσ,s).

Moreover, Dk� is bounded on [0, δ0) × B(2R, V1) × B(1; W ∩ Xσ,s) for any
k ∈ N .

(P1) is a consequence of the C∞-regularity of the Nemitsky operator induced by
g(δ, x, u) on Xσ,s and of the C∞-regularity of the map v2(·, ·, ·) proved in Lemma 2.1.
(P2) (Smoothing estimate) For all w ∈ W (n)⊥ ∩ Xσ,s and ∀ 0 ≤ σ ′ ≤ σ , ‖w‖σ ′,s ≤

exp(−Ln(σ−σ ′)) ‖w‖σ,s .
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The standard property (P2) follows from

‖w‖2
σ ′,s =

∑
|l|>Ln

exp(2σ ′|l|)(l2s + 1)‖wl‖2
H 1

=
∑

|l|>Ln

exp
(−2(σ − σ ′)|l|) exp(2σ |l|)(l2s + 1)‖wl‖2

H 1

≤ exp
(−2(σ − σ ′)Ln

)‖w‖2
σ,s .

The next property (P3) is an invertibility property of the linearized operator
Ln(δ, v1, w) : W (n) → W (n) defined by

Ln(δ, v1, w)[h] := Lωh − εPn�WDw�(δ, v1, w)[h]. (28)

Throughout the proof, w is the approximate solution obtained at a given step of the
Nash-Moser iteration.

The invertibility of Ln(δ, v1, w) is obtained by excising the set of parameters
(δ, v1) for which zero is an eigenvalue of Ln(δ, v1, w). Moreover, in order to have
bounds for the norm of the inverse operator L−1

n (δ, v1, w) which are sufficiently
good for the recursive scheme, we also excise the parameters (δ, v1) for which the
eigenvalues of Ln(δ, v1, w) are too small.

We prefix some definitions.

Definition 3.1 (Mean value)
For 
 := T × (0, π), we define

M(δ, v1, w) := 1

|
|
∫




∂ug
(
δ, x, v1(t, x) + w(t, x) + v2(δ, v1, w)(t, x)

)
dx dt.

Note that M(·, ·, ·) : [0, δ0) × B(2R; V1) × B(1; W ∩ Xσ,s) → R is a C∞-function.

Definition 3.2
For 1 < τ < 2, we define

[w]σ,s := inf
{ q∑

i=0

‖hi‖σi ,s

(σi − σ )2(τ−1)/β
; q ≥ 1, σ ≥ σi > σ, hi ∈ W (i), w =

q∑
i=0

hi

}
,

where β := (2 − τ )/τ , and we set [w]σ,s := ∞ if the above set is empty.

Definition 3.3 (First-order Melnikov nonresonance condition)
Let 0 < γ < 1, and let 1 < τ < 2. We define (recall that ω = √

1 + 2s∗δp−1 and
ε = s∗δp−1)
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�γ,τ
n (v1, w) :=

{
δ ∈ [0, δ0)

∣∣∣ |ωl − j | ≥ γ

(l + j )τ
,

∣∣∣ωl − j − ε
M(δ, v1, w)

2j

∣∣∣
≥ γ

(l + j )τ
, ∀l ∈ N, j ≥ 1, l �= j,

1

3|ε| < l, l ≤ Ln, j ≤ 2Ln

}
.

The set �
γ,τ
n (v1, w) contains a whole interval [0, ηn) for some ηn > 0 small enough.

(Note that �
γ,τ
n (v1, w) is defined by a finite set of inequalities.)

Remark 3.1
The intersections of the sets �

γ,τ
n (v1, w) over all possible (v1, w) in a neighborhood

of zero and over all n contains, for |ε|γ −1 small, the zero measure, uncountable set
Wγ := {ω ∈ R | |ωl − j | ≥ γ /l, ∀l �= j , l ≥ 0, j ≥ 1}, 0 < γ < 1/6 introduced in
[3] (see Remark 1.4 for consequences on the existence of periodic solutions).

We claim the following.
(P3) (Invertibility of Ln) There exist positive constants µ, δ0 such that if [w]σ,s ≤ µ,

‖v1‖0,s ≤ 2R, and δ ∈ �
γ,τ
n (v1, w) ∩ [0, δ0) for some 0 < γ < 1, 1 < τ <

2, then Ln(δ, v1, w) is invertible and the inverse operator L−1
n (δ, v1, w) :

W (n) → W (n) satisfies

‖L−1
n (δ, v1, w)[h]‖σ,s ≤ C

γ
(Ln)τ−1‖h‖σ,s (29)

for some positive constant C > 0.
Property (P3) is the real core of the convergence proof and where the analysis of

the “small divisors” enters into play. Property (P3) is proved in Section 4.

3.1. The Nash-Moser scheme
We are going to define recursively a sequence {wn}n≥0 with wn = wn(δ, v1) ∈
W (n), defined on smaller and smaller sets of nonresonant parameters (δ, v1), An ⊆
An−1 ⊆ · · · ⊆ A1 ⊆ A0 := {(δ, v1) | δ ∈ [0, δ0), ‖v1‖0,s ≤ 2R}. The sequence
(wn(δ, v1)) converges to a solution w(δ, v1) of the (P )-equation (25) for (δ, v1) ∈
A∞ := ⋂n≥1 An. The main goal of the construction is to show that, at the end of
the recurrence, the set of parameters A∞ :=⋂n≥1 An for which we have the solution
w(δ, v1) remains sufficiently large.

We define inductively the sequence {wn}n≥0. Define the loss of analyticity γn by

γn := γ0

n2 + 1
, σ0 = σ , σn+1 = σn − γn, ∀ n ≥ 0,

where we choose γ0 > 0 small such that the total loss of analyticity∑
n≥0

γn =
∑
n≥0

γ0

(n2 + 1)
≤ σ

2
; that is, σn ≥ σ

2
> 0, ∀n.
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We also assume

Ln := L02n, ∀ n ≥ 0,

for some large integer L0 specified in the next proposition.

PROPOSITION 3.1 (Induction)
Let A0 := {(δ, v1) | δ ∈ [0, δ0), ‖v1‖0,s ≤ 2R}. There exists L0 := L0(γ, τ ) > 0, ε0 :=
ε0(γ, τ ) > 0, such that for δ

p−1
0 γ −1 < ε0, there exists a sequence {wn}n≥0, wn =

wn(δ, v1) ∈ W (n), of solutions of the equation

Lωwn − εPn�W�(δ, v1, wn) = 0, (Pn)

defined inductively for (δ, v1) ∈ An ⊆ An−1 ⊆ · · · ⊆ A1 ⊆ A0, where

An := {(δ, v1) ∈ An−1

∣∣ δ ∈ �γ,τ
n (v1, wn−1)

} ⊆ An−1, (30)

wn(δ, v1) = ∑n
i=0 hi(δ, v1), and hi = hi(δ, v1) ∈ W (i) satisfy ‖h0‖σ0,s ≤ |ε|K0,

‖hi‖σi ,s ≤ |ε|γ −1 exp(−χi) ∀1 ≤ i ≤ n for some 1 < χ < 2 and some constant
K0 > 0.

We define

A∞ :=
⋂

n≥0
An.

Remark 3.2
For a given (δ, v1), the sequence (wn) may be finite because the iterative process stops
after wk−1 if δ /∈ �

γ,τ

k (v1, wk−1), that is, if (δ, v1) �∈ Ak . However, from this possibly
finite sequence, we define a C∞-map w̃(δ, v1) on the whole set A0 (see Lemma 3.3)
and Cantor-like set B∞ such that B∞ ⊂ A∞, and ∀(δ, v1) ∈ B∞, w̃(δ, v1) is an exact
solution of the (P )-equation. It is justified in Proposition 3.2 that B∞ is a large set.
As a consequence also, A∞ is large.

Proof of Proposition 3.1
The proof proceeds by induction.

First step: Initialization. Let L0 be given. If |ω−1|L0 ≤ 1/2, then Lω|W (0) is invertible
and ‖L−1

ω h‖σ0,s ≤ 2‖h‖σ0,s , ∀h ∈ W (0). Indeed, the eigenvalues of Lω|W (0) are −ω2l2 +
j 2, ∀ 0 ≤ l ≤ L0, j ≥ 1, j �= l, and

|−ω2l2 + j 2| = |−ωl + j |(ωl + j ) ≥ (|j − l| − |ω − 1|L0)(ωl + j ) ≥
(

1 − 1

2

)
.
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By the implicit function theorem, using property (P1), there exist K0 > 0, ε1 :=
ε1(γ, L0) > 0 such that if |ε|γ −1 < ε1 and ∀v1 ∈ B(2R, V1), equation (P0) has a
unique solution w0(δ, v1) satisfying

‖w0(δ, v1)‖σ0,s ≤ K0|ε|.

Moreover, for δ
p−1
0 γ −1 < ε0, the map (δ, v1) �→ w0(δ, v1) is in C∞(A0, W

(0)) and
‖Dkw0(δ, v1)‖σ0,s ≤ C(k).

Second step: Iteration. Fix some χ ∈ (1, 2). Let ε2 := ε2(L0, γ, τ ) ∈ (0, ε1(γ, L0))
be small enough such that

ε2 max(1, eK0γ )
∑
i≥0

exp (−χi)
(1 + i2

γ0

)(2(τ−1))/β
< µ, (31)

where µ is defined in property (P3) and β := (2 − τ )/τ .
Suppose that we have already defined a solution wn = wn(δ, v1) ∈ W (n) of

equation (Pn) satisfying the properties stated in the proposition. We want to define

wn+1 = wn+1(δ, v1) := wn(δ, v1) + hn+1(δ, v1), hn+1(δ, v1) ∈ W (n+1),

as an exact solution of the equation

Lωwn+1 − εPn+1�W�(δ, v1, wn+1) = 0. (Pn+1)

In order to find a solution wn+1 = wn + hn+1 of equation (Pn+1), we write, for
h ∈ W (n+1),

Lω(wn + h) − εPn+1�W�(δ, v1, wn + h)

= Lωwn − εPn+1�W�(δ, v1, wn)

+ Lωh − εPn+1�WDw�(δ, v1, wn)[h] + R(h)

= rn + Ln+1(δ, v1, wn)[h] + R(h), (32)

where since wn solves equation (Pn),{
rn := Lωwn − εPn+1�W�(δ, v1, wn) = −εP ⊥

n Pn+1�W�(δ, v1, wn) ∈ W (n+1),

R(h) := −εPn+1�W

(
�(δ, v1, wn + h) − �(δ, v1, wn) − Dw�(δ, v1, wn)[h]

)
.

The term rn is super-exponentially small because, using properties (P2) and (P1),

‖rn‖σn+1,s ≤ |ε| C exp(−Lnγn)‖Pn+1�W�(δ, v1, wn)‖σn,s

≤ |ε| C ′ exp(−Lnγn)‖�(δ, v1, wn)‖σn,s

≤ |ε| C ′′ exp(−Lnγn) (33)



380 BERTI and BOLLE

being ‖wn‖σn,s bounded independently of n since, by the induction hypothesis,

‖wn‖σn,s ≤
n∑

i=0

‖hi‖σi ,s ≤ max(1, eK0γ )|ε|γ −1
∞∑
i=0

exp(−χi), (34)

with h0 := w0. The term R(h) is quadratic in h since, by property (P1) and (34),{
‖R(h)‖σn+1,s ≤ C|ε| ‖h‖2

σn+1,s
,

‖R(h) − R(h′)‖σn+1,s ≤ C|ε| (‖h‖σn+1,s + ‖h′‖σn+1,s) ‖h − h′‖σn+1,s

(35)

for all h, h′ ∈ W (n+1) with ‖h‖σn+1,s , ‖h′‖σn+1,s small enough.

Since wn = ∑n
i=0 hi with ‖hi‖σi ,s ≤ max(1, eK0γ )|ε|γ −1 exp(−χi), and σi −

σn+1 ≥ γi := γ0/(1 + i2), ∀i = 0, . . . , n,

[wn]σn+1,s≤
n∑

i=0

‖hi‖σi ,s

(σi − σn+1)2(τ−1)/β
≤ max(1, eK0γ )

|ε|
γ

∑
i≥0

exp(−χi)
(1 + i2

γ0

)2(τ−1)/β
< µ

for |ε|γ −1 ≤ ε2 and by (31).
Hence, by property (P3), the linear operator Ln+1(δ, v1, wn) : DLn+1 ⊂

W (n+1) → W (n+1) is invertible for (δ, v1) restricted to the set of parameters

An+1 := {(δ, v1) ∈ An

∣∣ δ ∈ �
γ,τ

n+1(v1, wn)
} ⊆ An, (36)

and the inverse operator satisfies

‖Ln+1(δ, v1, wn)−1‖σn+1,s ≤ C

γ
(Ln+1)τ−1, ∀(δ, v1) ∈ An+1. (37)

By (32), equation (Pn+1) for wn+1 = wn + h is equivalent to find h ∈ W (n+1)

solving

h = −Ln+1(δ, v1, wn)−1
(
rn + R(h)

)
,

namely, to look for a fixed point

h = G(δ, v1, wn, h), h ∈ W (n+1), (38)

of the nonlinear operator

G(δ, v1, wn, ·) : W (n+1) → W (n+1),

G(δ, v1, wn, h) := −Ln+1(δ, v1, wn)−1
(
rn + R(h)

)
.

To complete the proof of the proposition, we need the following lemma.
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LEMMA 3.1 (Contraction)
There exist L0(γ, τ ) > 0, ε0(L0, γ, τ ), such that, ∀|ε|γ −1 < ε0, the operator
G(δ, v1, wn, ·) is, for any n ≥ 0, a contraction in the ball

B(ρn+1; W (n+1)) :=
{
h ∈ W (n+1)

∣∣∣ ‖h‖σn+1,s ≤ ρn+1 := |ε|
γ

exp(−χn+1)
}
.

Proof
We first prove that G(δ, v1, wn, ·) maps the ball B(ρn+1; W (n+1)) into itself.

By (37), (33), and (35),

‖G(δ, v1, wn, h)‖σn+1,s = ∥∥Ln+1(δ, v1, wn)−1
(
rn + R(h)

)∥∥
σn+1,s

≤ C

γ
(Ln+1)τ−1

(‖rn‖σn+1,s + ‖R(h)‖σn+1,s

)
≤ C ′

γ
(Ln+1)τ−1(|ε| exp(−Lnγn) + |ε| ‖h‖2

σn+1,s

)
. (39)

By (39), if ‖h‖σn+1,s ≤ ρn+1, then

‖G(δ, v1, wn, h)‖σn+1,s ≤ C ′

γ
(Ln+1)τ−1|ε|( exp(−Lnγn) + ρ2

n+1

) ≤ ρn+1,

provided that

C ′ |ε|
γ

(Ln+1)τ−1 exp(−Lnγn) ≤ ρn+1

2
and C ′ |ε|

γ
(Ln+1)τ−1ρn+1 ≤ 1

2
. (40)

The first inequality in (40) becomes, for ρn+1 := |ε|γ −1 exp(−χn+1),

C ′(Ln+1)τ−1 exp(−Lnγn) ≤ 1

2
exp(−χn+1),

which, for Ln := L02n, γn := γ0/(1 + n2), and L0 := L0(γ, τ ) > 0 large enough, is
satisfied ∀n ≥ 0.

Next, the second inequality in (40) becomes

C ′ |ε|2
γ 2

(
L0(γ, τ )2n+1

)τ−1
exp(−χn+1) ≤ 1

2
,

which is satisfied for |ε|γ −1 ≤ ε0(L0, γ, τ ) (≤ ε2) small enough, ∀n ≥ 0.
With similar estimates, using (35), we can prove that ∀h, h′ ∈ B(ρn+1; W (n+1)),

‖G(δ, v1, wn, h
′) − G(δ, v1, wn, h)‖σn+1,s ≤ 1

2
‖h − h′‖σn+1,s



382 BERTI and BOLLE

again for L0 large enough and |ε|γ −1 ≤ ε0(L0, γ, τ ) small enough, uniformly in n,
and we conclude that G(δ, v1, wn, ·) is a contraction on B(ρn+1; W (n+1)). �

By the standard contraction mapping theorem, we deduce the existence, for L0(γ, τ )
large enough and |ε|γ −1 < ε0(L0, γ, τ ), of a unique hn+1 ∈ W (n+1) solving (38) and
satisfying

‖hn+1‖σn+1,s ≤ ρn+1 = |ε|
γ

exp(−χn+1).

Summarizing, wn+1(δ, v1) = wn(δ, v1)+hn+1(δ, v1) is a solution in W (n+1) of equation
(Pn+1), defined for (δ, v1) ∈ An+1 ⊆ An ⊆ · · · ⊆ A1 ⊆ A0, and wn+1(δ, v1) =∑n+1

i=0 hi(δ, v1), where hi = hi(δ, v1) ∈ W (i) satisfy ‖hi‖σi ,s ≤ |ε|γ −1 exp(−χi) for
some χ ∈ (1, 2), ∀i = 1, . . . , n + 1, ‖h0‖σ0,s ≤ K0|ε|. �

Remark 3.3
A difference with respect to the usual quadratic Nash-Moser scheme is that hn(δ, v1)
is found as an exact solution of equation (Pn) and not just a solution of the linearized
equation rn + Ln+1(δ, v1, wn)[h] = 0. It appears to be more convenient to prove the
regularity of hn(δ, v1) with respect to the parameters (δ, v1) (see Lemma 3.2).

COROLLARY 3.1 (Solution of the (P )-equation)
For (δ, v1) ∈ A∞ := ⋂n≥0 An,

∑
i≥0 hi(δ, v1) converges in Xσ/2,s to a solution

w(δ, v1) ∈ W ∩ Xσ/2,s of the (P )-equation (25) and ‖w(δ, v1)‖σ/2,s ≤ C|ε|γ −1. The
convergence is uniform in A∞.

Proof
By Proposition 3.1, for (δ, v1) ∈ A∞ :=⋂n≥0 An,

∞∑
i=0

‖hi(δ, v1)‖σ/2,s ≤
∞∑
i=0

‖hi(δ, v1)‖σi ,s ≤ max(1, eK0γ )
∞∑
i=0

|ε|
γ

exp(−χi) < +∞.

(41)

Hence the series of functions w =∑i≥0 hi : A∞ → W ∩ Xσ/2,s converges normally,
and by (41), ‖w(δ, v1)‖σ/2,s ≤ C|ε|γ −1 with C := max(1, eK0γ )

∑∞
i=0 exp(−χi).

Let us justify the fact that Lωw = ε�W�(δ, v1, w). Since wn solves equation
(Pn),

Lωwn = εPn�W�(δ, v1, wn) = ε�W�(δ, v1, wn) − εP ⊥
n �W�(δ, v1, wn). (42)

We have, by (P2), (P1), and since σn − (σ/2) ≥ γn := γ0/(n2 + 1),

‖P ⊥
n �W�(δ, v1, wn)‖σ/2,s ≤ C exp

(
−Ln

(
σn −
(σ

2

)))
≤ C exp

(
−γ0

L02n

(n2 + 1)

)
.
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Hence, by (P1), the right-hand side in (42) converges in Xσ/2,s to �(δ, v1, w). More-
over, since (wn) → w in Xσ/2,s , (Lωwn) → Lωw in the sense of distributions. Hence
Lωw = ε�W�(δ, v1, w). �

3.2. C∞-extension
Before proving the key property (P3) on the linearized operator, we prove a
Whitney-differentiability property for w(δ, v1) extending w(·, ·) in a C∞-way on the
whole A0.

For this, some bound on the derivatives of hn = wn − wn−1 is required.

LEMMA 3.2 (Estimates for the derivatives of hn and wn)
For ε0γ

−1 = δ
p−1
0 γ −1 small enough, the function (δ, v1) → hn(δ, v1) is in

C∞(An,W
(n)), ∀n ≥ 0, and the kth-derivative Dkhn(δ, v1) satisfies

‖Dkhn(δ, v1)‖σn,s ≤ K1(k, χ )n exp(−χn) (43)

for χ ∈ (1, χ) and a suitable positive constant K1(k, χ ), ∀n ≥ 0.
As a consequence, the function (δ, v1) → wn(δ, v1) = ∑n

i=0 hi(δ, v1) is in
C∞(An,W

(n)), and the kth-derivative Dkwn(δ, v1) satisfies

‖Dkwn(δ, v1)‖σn,s ≤ K2(k) (44)

for a suitable positive constant K2(k).

Proof
By the first step in the proof of Proposition 3.1, h0 = w0 depends smoothly on (δ, v1),
and ‖Dkw0(δ, v1)‖σ0,s ≤ C(k).

Next, assume by induction that hn = hn(δ, v1) is a C∞-map defined in An. We
prove that hn+1 = hn+1(δ, v1) is C∞ too.

First, recall that hn+1 = hn+1(δ, v1) is defined, in Proposition 3.1, for (δ, v1) ∈
An+1 as a solution in W (n+1) of equation (Pn+1); namely,

Un+1
(
δ, v1, hn+1(δ, v1)

) = 0, (Pn+1)

where

Un+1(δ, v1, h) := Lω(wn + h) − εPn+1�W�(δ, v1, wn + h).

We claim that DhUn+1(δ, v1, hn+1) = Ln+1(δ, v1, wn+1) is invertible and

∥∥(DhUn+1(δ, v1, hn+1)
)−1∥∥

σn+1,s
= ‖Ln+1(δ, v1, wn+1)−1‖σn+1,s ≤ C ′

γ
(Ln+1)τ−1.

(45)
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Now equation (Pn+1) can be written as h + qn+1(δ, v1, h) = 0, where

qn+1(δ, v1, h) = (�)−1[Lωwn − (ω2 + 1)htt − εPn+1�W�(δ, v1, wn + h)].

The map qn+1 : [0, δ0) × V1 × W (n+1) → W (n+1) is C∞, and the invertibility of
Ln+1(δ, v1, wn+1) implies the injectivity and, hence (noting that Dhqn+1(δ, v1, hn+1)
is compact), the invertibility of I + Dhqn+1(δ, v1, hn+1). As a consequence, by the
implicit function theorem, the map (δ, v1) �→ hn+1(δ, v1) is in C∞(An+1, W

(n+1)).
Let us prove (45). Using (P1) and ‖wn+1 − wn‖σn+1,s = ‖hn+1‖σn+1,s ≤

|ε|γ −1 exp(−χn+1), we get

‖Ln+1(δ, v1, wn+1) − Ln+1(δ, v1, wn)‖σn+1,s

= ∥∥εPn+1�W

(
Dw�(δ, v1, wn+1) − Dw�(δ, v1, wn)

)∥∥
σn+1,s

≤ C|ε| ‖hn+1‖σn+1,s ≤ C
ε2

γ
exp(−χn+1). (46)

Therefore

Ln+1(δ, v1, wn+1)

= Ln+1(δ, v1, wn)
[
Id + Ln+1(δ, v1, wn)−1

(
Ln+1(δ, v1, wn+1) − Ln+1(δ, v1, wn)

)]
(47)

is invertible whenever (recall (37), (46))∥∥∥Ln+1(δ, v1, wn)−1
(

Ln+1(δ, v1, wn+1)−Ln+1(δ, v1, wn)
)∥∥∥

σn+1,s
≤ C

γ
(Ln+1)τ−1 ε2

γ
exp(−χn+1)

<
1

2
, (48)

which is true, provided that |ε|γ −1 is small enough, for all n ≥ 0. (Note that
(Ln+1)τ−1 = (L02n+1)τ−1 � exp(χn+1) for n large.) Furthermore, by (47), (37),
and (48), estimate (45) holds.

We now prove in detail estimate (43) for k = 1. Differentiating equation (Pn+1)
with respect to some coordinate λ of (δ, v1) ∈ An+1, we obtain

Ln+1(δ, v1, wn+1)[∂λhn+1(δ, v1)] = −(∂λUn+1)
(
δ, v1, hn+1(δ, v1)

)
, (P ′

n+1)

and therefore, by (45),

‖∂λhn+1‖σn+1,s ≤ C

γ
(Ln+1)τ−1‖(∂λUn+1)(δ, v1, hn+1)‖σn+1,s . (49)

To estimate the right-hand side of (49), first notice that since wn = wn(δ, v1) solves

Lωwn = εPn�W�(δ, v1, wn), ∀(δ, v1) ∈ An,
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we have

Un+1(δ, v1, h) = Lωh + ε
(
Pn�W�(δ, v1, wn) − Pn+1�W�(δ, v1, wn + h)

)
.

Let us write

(∂λUn+1)(δ, v1, h) = (∂λUn+1)(δ, v1, 0) + r(δ, v1, h), (50)

where

(∂λUn+1)(δ, v1, 0) = (Pn − Pn+1)�W∂λ

[
ε(δ)�
(
δ, v1, wn(δ, v1)

)]
= −εP ⊥

n Pn+1�W

[
(∂λ�)(δ, v1, wn) + (∂w�)(δ, v1, wn)[∂λwn]

]
− ∂λ

(
ε(δ)
)
P ⊥

n Pn+1�W�(δ, v1, wn) (51)

and

r(δ, v1, h) := −εPn+1�W [(∂λ�)(δ, v1, wn + h) − (∂λ�)(δ, v1, wn)]

− εPn+1�W [(∂w�)(δ, v1, wn + h) − (∂w�)(δ, v1, wn)][∂λwn]

+ ∂λ(Lω(δ)h) + ∂λ

(
ε(δ)
)
Pn+1�W

(
�(δ, v1, wn) − �(δ, v1, wn + h)

)
,

(52)

with ∂λ(Lω(δ)h) = 0, ∂λ(ε(δ)) = 0 if λ �= δ and

∂δ(Lω(δ)h) = −2(p − 1)δp−2htt , ∂δ

(
ε(δ)
) = (p − 1)δp−2. (53)

By (P1), (34), (52), and (53), for h ∈ W (n+1),

‖r(δ, v1, h)‖σn+1,s ≤ C|ε| ‖h‖σn+1,s(1 + ‖∂λwn‖σn+1,s) + CL2
n+1‖h‖σn+1,s . (54)

We now estimate (∂λUn+1)(δ, v1, 0). By (51) and properties (P2), (P1),

‖(∂λUn+1)(δ, v1, 0)‖σn+1,s

≤ exp(−Lnγn)
[|ε|‖(∂λ�)(δ, v1, wn) + (∂w�)(δ, v1, wn)[∂λwn]‖σn,s

+‖�(δ, v1, wn)‖σn,s

]
≤ C exp(−Lnγn)(1 + ‖∂λwn‖σn,s). (55)

Combining (49), (50), (54), (55), and the bound ‖hn+1‖σn+1,s ≤ |ε|γ −1 exp (−χn+1),
we get

‖∂λhn+1‖σn+1,s ≤ C

γ
(Ln+1)τ+1

( |ε|
γ

exp(−χn+1) + exp(−Lnγn)
)

(1 + ‖∂λwn‖σn,s)

≤ C(χ ) exp(−χn+1)
(

1 +
n∑

i=0

‖∂λhi‖σi ,s

)
(56)
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for any χ ∈ (1, χ). By (56), the sequence an := ‖∂λhn‖σn,s satisfies

a0 ≤ C and an+1 ≤ C(χ ) exp(−χn+1)(1 + a0 + · · · + an),

which implies (by induction)

‖∂λhn‖σn,s = an ≤ K(χ)n exp(−χn), ∀n ≥ 0,

provided that K(χ) has been chosen large enough. We can prove in the same way the
general estimate (43), from which (44) follows. �

Since, by (43), hn(δ, v1) = O(εγ −1 exp (−χn)), and the nonresonant set An is obtained
at each step by deleting strips of size O(γ /Lτ

n), we can define (by interpolation, say)
a C∞-extension w̃(δ, v1) of w(δ, v1) for all (δ, v1) ∈ A0.

Let

Ãn :=
{

(δ, v1) ∈ An

∣∣∣ dist
(
(δ, v1), ∂An

) ≥ 2ν

L3
n

}
⊂ An,

where νγ −1 > 0 is some small constant to be specified later (see Lemma 3.4).

LEMMA 3.3 (Whitney C∞-extension w̃ of w on A0)
There exists a function w̃(δ, v1) ∈ C∞(A0,W ∩ Xσ/2,s) satisfying

‖w̃(δ, v1)‖σ/2,s ≤ |ε|
γ

C, ‖Dkw̃(δ, v1)‖σ/2,s ≤ C(k)

νk
, ∀(δ, v1) ∈ A0, ∀k ≥ 1,

(57)

for some C(k) > 0, such that

∀ (δ, v1) ∈ Ã∞ :=
⋂

n≥0
Ãn, w̃(δ, v1) solves the (P)-equation (25).

Moreover, there exists a sequence w̃n ∈ C∞(A0, W (n)) such that

w̃n(δ, v1) = wn(δ, v1), ∀(δ, v1) ∈ Ãn, (58)

and

‖w̃(δ, v1) − w̃n(δ, v1)‖σ/2,s ≤ |ε|C
γ

exp(−χ̃n), (59)

‖Dkw̃(δ, v1) − Dkw̃n(δ, v1)‖σ/2,s ≤ C(k)

νk
exp(−χ̃n), ∀(δ, v1) ∈ A0, (60)

for some χ̃ ∈ (1, χ ).
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Proof
Let ϕ : R×V1 → R+ be a C∞-function supported in the open ball B(0, 1) of center 0
and radius 1 with

∫
R×V1

ϕ dµ = 1. Here µ is the Borelian positive measure of R × V1

defined by µ(E) = m(L−1(E)), where L is some automorphism from RN+1 to R×V1

and m is the Lebesgue measure in RN+1.
Let ϕn : R × V1 → R+ be the mollifier

ϕn(λ) :=
(L3

n

ν

)N+1
ϕ
(L3

n

ν
λ
)

(here λ := (δ, v1)), which is a C∞-function satisfying

supp ϕn ⊂ B
(

0,
ν

L3
n

)
and

∫
R×V1

ϕn dµ = 1. (61)

Next, we define ψn : R × V1 → R+ as

ψn(λ) := (ϕn ∗ χA∗
n
)(λ) =

∫
R×V1

ϕn(λ − η) χA∗
n
(η) dµ(η),

where χA∗
n

is the characteristic function of the set

A∗
n :=
{
λ = (δ, v1) ∈ An

∣∣∣ dist(λ, ∂An) ≥ ν

L3
n

}
⊂ An;

namely, χA∗
n
(λ) := 1 if λ ∈ A∗

n, and χA∗
n
(λ) := 0 if λ /∈ A∗

n.
The function ψn is C∞, and ∀k ∈ N, ∀λ ∈ R × V1,

|Dkψn(λ)| =
∣∣∣ ∫

R×V1

Dkϕn(λ − η) χA∗
n
(η) dµ(η)

∣∣∣
≤
∫

R×V1

∣∣∣(L3
n

ν

)k(L3
n

ν

)N+1
(Dkϕ)

(L3
n

ν
(λ − η)

)∣∣∣ dµ(η)

=
(L3

n

ν

)k ∫
R×V1

|Dkϕ| dµ =
(L3

n

ν

)k
C(k), (62)

where C(k) := ∫R×V1
|Dkϕ| dµ. Furthermore, by (61) and the definition of A∗

n and
Ãn,

0 ≤ ψn(λ) ≤ 1, supp ψn ⊂ int An and ψn(λ) = 1 if λ ∈ Ãn .

Finally, we can define w̃n : A0 → W (n) by

w̃0(λ) := w0(λ), w̃n+1(λ) := w̃n(λ) + h̃n+1(λ) ∈ W (n+1),
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where

h̃n+1(λ) :=
{

ψn+1(λ)hn+1(λ) if λ ∈ An+1,

0 if λ /∈ An+1,

is in C∞(A0,W
(n+1)) because supp ψn+1 ⊂ int An+1 and, by Lemma 3.2, hn+1 ∈

C∞(An+1, W
(n+1)). Therefore we have

w̃n(λ) =
n∑

i=0

h̃i(λ), w̃n ∈ C∞(A0,W
(n)),

and (58) holds.
By the bounds (62) and (43), we obtain ∀k ∈ N, ∀λ ∈ A0, ∀n ≥ 0,

‖̃hn+1(λ)‖σn+1,s ≤ |ε|K
γ

exp(−χn),

‖Dkh̃n+1(λ)‖σn+1,s ≤ C(k, χ )n
(L3

n+1

ν

)k
exp(−χn) ≤ K(k)

νk
exp(−χ̃n)

for some 1 < χ̃ < χ and some positive constant K(k) large enough. As a consequence,
the sequence (w̃n) (and all its derivatives) converges uniformly in A0 for the norm
‖ ‖σ/2,s on W , to some function w̃(δ, v1) ∈ C∞(A0, W ∩ Xσ/2,s) which satisfies (57),
(59), and (60).

Finally, note that if λ /∈ A∞ := ⋂n≥0 An, then the series w̃(λ) = ∑n≥1 h̃n(λ) is

a finite sum. On the other hand, if λ ∈ Ã∞ :=⋂n≥0 Ãn, then w̃(λ) = w(λ) solves the
(P )-equation (25). �

Remark 3.4
If (δ, v1) �∈ Ã∞, we claim that w̃(δ, v1) solves the (P )-equation up to exponentially
small remainders. There exist α > 0, δ0(γ, τ ) > 0 such that ∀0 < δ ≤ δ0(γ, τ ),∥∥Lωw̃(δ, v1) − ε�W�

(
δ, v1, w̃(δ, v1)

)∥∥
σ/4,s

≤ |ε|
γ

exp
(
− 1

δα

)
.

Since we do not use this property in the present article, we do not give here the proof.

3.3. Measure estimate
We now replace the set Ã∞ with a smaller Cantor-like set B∞ which has the advantage
of being independent of the iteration steps. This is more convenient for the measure
estimates required in Section 5. (This issue is discussed differently in [11].)

Define

Bn := {(δ, v1) ∈ Ã0

∣∣ δ ∈ �2γ,τ
n

(
v1, w̃(δ, v1)

)}
, (63)
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where we have replaced γ with 2γ in the definition of �
γ,τ
n (see Definition 3.3).

Note that Bn does not depend on the approximate solution wn but only on the fixed
function w̃.

LEMMA 3.4
If νγ −1 > 0 and |ε|γ −1 are small enough, then

Bn ⊂ Ãn, ∀n ≥ 0.

Hence B∞ := ⋂n≥1 Bn ⊂ Ã∞ ⊂ A∞, and so if (δ, v1) ∈ B∞, then w̃(δ, v1) solves
the (P )-equation (25).

Proof
We prove the lemma by induction. First, B0 ⊂ Ã0. Suppose next that Bn ⊂ Ãn holds.
In order to prove that Bn+1 ⊂ Ãn+1, take any (δ, v1) ∈ Bn+1. We have to justify that
the ball B((δ, v1), 2ν/L3

n+1) ⊂ An+1.
First, since Bn+1 ⊂ Bn ⊂ Ãn, (δ, v1) ∈ Ãn. Hence, since Ln+1 > Ln, B((δ, v1),

2ν/L3
n+1) ⊂ An.

Let (δ′, v′
1) ∈ B((δ, v1), 2ν/L3

n+1). Since (δ, v1) ∈ Ãn, we have w̃n(δ, v1) =
wn(δ, v1). Moreover, by (44), ‖Dwn‖σ/2,s ≤ C. By (59), we can derive

‖wn(δ′, v′
1) − w̃(δ, v1)‖σ/2,s

≤ ‖wn(δ′, v′
1) − wn(δ, v1)‖σ/2,s + ‖wn(δ, v1) − w̃(δ, v1)‖σ/2,s

≤ 2νC

L3
n+1

+ C|ε|
γ

exp(−χ̃n).

Hence, by (63), setting ω′ :=
√

1 + 2(δ′)p−1 and ε′ := (δ′)p−1 (for simplicity of
notation, suppose that s∗ = 1),∣∣∣ω′l − j − ε′ M(δ′, v′

1, wn(δ′, v′
1))

2j

∣∣∣
≥
∣∣∣ωl − j − ε

M(δ, v1, w̃(δ, v1))

2j

∣∣∣− l
Cν

L3
n+1

− C
|ε|ν
L3

n+1

− C
|ε|2
γ

exp(−χ̃n)

≥ 2γ

(l + j )τ
− Cν

L2
n+1

− C
|ε|2
γ

exp(−χ̃n) ≥ γ

(l + j )τ

for all 1/3|ε| < l < Ln+1, l �= j , j ≤ 2Ln+1, whenever

γ

(3Ln+1)τ
≥ C
( ν

L2
n+1

+ |ε|2
γ

exp(−χ̃n)
)
. (64)
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Formula (64) holds true, for |ε|γ −1 and νγ −1 small, for all n ≥ 0, because τ < 2 and
limn→∞ Lτ

n+1 exp(−χ̃n) = 0. It results in B((δ, v1), 2ν/L3
n+1)) ⊂ An+1. �

Up to now, we have not justified the fact that

B∞ ⊂ Ã∞ ⊂ A∞ (65)

are not reduced to {δ = 0} × B(2R, V1). It is a consequence of the following result,
which is applied in Section 5.

PROPOSITION 3.2 (Measure estimate of B∞)
Let V1 : [0, δ0) → V1 be a C1-function. Then

lim
η→0+

meas{δ ∈ [0, η) | (δ, V1(δ)) ∈ B∞}
η

= 1. (66)

Proof
Let 0 < η < δ0. Define

CV1,η := {δ ∈ (0, η)
∣∣ (δ, V1(δ)

) ∈ B∞
}

and DV1,η := (0, η)\CV1,η.

By the definition B∞ := ⋂n≥1 Bn (see also the expression of B∞ in the statement of
Theorem 3.1, where for simplicity of notation, we suppose that s∗ = 1),

DV1,η =
{
δ ∈ (0, η)

∣∣∣∣∣∣ω(δ)l − j − δp−1m(δ)

2j

∣∣∣ < 2γ

(l + j )τ

or
∣∣∣ω(δ)l − j

∣∣∣ < 2γ

(l + j )τ
for some l, j >

1

3δp−1
, l �= j

}
,

where m(δ) := M
(
δ, V1(δ), w̃(δ, V1(δ))

)
is a function in C1([0, δ0), R) since w̃(·, ·)

is in C∞(A0,W ∩ Xσ/2,s)) and V1 is C1. This implies, in particular,

|m(δ)| + |m′(δ)| ≤ C, ∀δ ∈
[
0,

δ0

2

]
(67)

for some positive constant C.
We claim that for any interval [δ1/2, δ1] ⊂ [0, η] ⊂ [0, δ0/2], the following

measure estimate holds:

meas
(

DV1,η ∩
[δ1

2
, δ1

])
≤ K1(τ )γ η(p−1)(τ−1) meas

([δ1

2
, δ1

])
(68)

for some constant K1(τ ) > 0.
Before proving (68), we show how to conclude the proof of the proposition.

Writing (0, η] =⋃n≥0 [η/2n+1, η/2n] and applying the measure estimate (68) to any
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interval [δ1/2, δ1] = [η/2n+1, η/2n], we get

meas(DV1,η ∩ [0, η]) ≤ K1(τ )γ η(p−1)(τ−1)η,

whence limη→0+ meas (CV1,η ∩ (0, η))/η = 1, proving the proposition.
We now prove (68). We have

DV1,η

⋂[δ1

2
, δ1

]
⊂
⋃

(l,j )∈IR

Rl,j (δ1), (69)

where

Rl,j (δ1) :=
{
δ ∈
[δ1

2
, δ1

] ∣∣∣∣∣∣ω(δ)l − j − δp−1m(δ)

2j

∣∣∣ < 2γ

(l + j )τ

or
∣∣∣ω(δ)l − j

∣∣∣ < 2γ

(l + j )τ

}
and

IR :=
{

(l, j )
∣∣∣ l >

1

3δ
p−1
1

, l �= j,
j

l
∈ [1 − c0δ

p−1
1 , 1 + c0δ

p−1
1 ]
}
.

(Indeed, note that Rj,l(δ1) = ∅ unless j/l ∈ [1−c0δ
p−1
1 , 1+c0δ

p−1
1 ] for some constant

c0 > 0 large enough.)
Next, let us prove that

meas
(
Rlj (δ1)

) = O
( γ

lτ+1δ
p−2
1

)
. (70)

Define flj (δ) := ω(δ)l − j − (δp−1m(δ)/2j ) and Sj,l(δ1) := {δ ∈ [δ1/2, δ1] :
|fl,j (δ)| < 2γ /(l + j )τ }. Provided that δ0 has been chosen small enough (recall that
j, l ≥ 1/3δ

p−1
0 ),

|∂δflj (δ)| =
∣∣∣ l(p − 1)δp−2

√
1 + 2δp−1

− (p − 1)δp−2m(δ)

2j
− δp−1m′(δ)

2j

∣∣∣
≥ (p − 1)δp−2

2

(
l − C

j

)
≥ (p − 1)δp−2l

4
,

and therefore |∂δflj (δ)| ≥ (p − 1)δp−2
1 l/2p for any δ ∈ [δ1/2, δ1]. This implies

meas
(
Slj (δ1)

) ≤ 4γ

(l + j )τ
× ( min

δ∈[δ1/2,δ1]
|∂δflj (δ)|)−1

≤ 4γ

(l + j )τ
× 2p

(p − 1)lδp−2
1

= O
( γ

lτ+1δ
p−2
1

)
.
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Similarly, we can prove

meas
({

δ ∈
[δ1

2
, δ1

]
: |ω(δ)l − j | <

2γ

(l + j )τ

})
= O
( γ

lτ+1δ
p−2
1

)
,

and the measure estimate (70) follows.
Now, by (69) and (70) and since, for a given l, the number of j for which (l, j ) ∈ IR

is O(δp−1
1 l),

meas
(

DV1,η ∩
[δ1

2
, δ1

])
≤
∑

(l,j )∈IR

meas
(
Rj,l(δ1)

) ≤ C
∑

l≥1/3δ
p−1
1

δ
p−1
1 l × γ

lτ+1δ
p−2
1

≤ K2(τ )γ δ
1+(p−1)(τ−1)
1 ,

whence we obtain (68) since 0 < δ1 < η. �

We summarize the main result of this section as follows.

THEOREM 3.1 (Solution of the (P )-equation)
For δ0 := δ0(γ, τ ) > 0 small enough, there exist a C∞-function w̃ : A0 := {(δ, v1) |
δ ∈ [0, δ0), ‖v1‖0,s ≤ 2R} → W ∩ Xσ/2,s satisfying (57), and the large (see (66))
Cantor set

B∞ :=
{

(δ, v1) ∈ A0 :
∣∣∣ω(δ)l − j − s∗δp−1 M(δ, v1, w̃(δ, v1))

2j

∣∣∣ ≥ 2γ

(l + j )τ
,∣∣∣ω(δ)l − j

∣∣∣ ≥ 2γ

(l + j )τ
, ∀l ≥ 1

3δp−1
, l �= j

}
⊂ A0,

where ω(δ) = √
1 + 2s∗δp−1 and M(δ, v1, w) is defined in Definition 3.1 such that

∀(δ, v1) ∈ B∞, w̃(δ, v1) solves the (P )-equation (25).

4. Analysis of the linearized problem: Proof of (P3)
We prove in this section the key property (P3) on the inversion of the linear operator
Ln(δ, v1, w) defined in (28).

Throughout this section we use the notation

Fk :=
{
f ∈ H 1

0

(
(0, π); R

) ∣∣∣ ∫ π

0
f (x) sin(kx) dx = 0

}
= 〈sin(kx)〉⊥,

whence the space W , defined in (6), is written as

W =
{
h =
∑
k∈Z

exp(ikt)hk ∈ X0,s

∣∣∣hk = h−k, hk ∈ Fk, ∀k ∈ Z
}
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and the corresponding projector �W : Xσ,s → W is

(�Wh)(t, x) =
∑
k∈Z

exp(ikt)(πkhk)(x), (71)

where πk : H 1
0 ((0, π); R) → Fk := 〈sin(kx)〉⊥ is the L2-orthogonal projector onto

Fk ,

(πkf )(x) := f (x) −
( 2

π

∫ π

0
f (x) sin(kx) dx

)
sin(kx).

Note that π−k = πk . Hence, since hk = h−k , πkhk = π−kh−k .

4.1. Decomposition of Ln(δ, v1, w)
Recalling (26), the operator Ln(δ, v1, w) : D(Ln) ⊂ W (n) → W (n) is written as

Ln(δ, v1, w)[h]

:= Lωh − εPn�WDw�(δ, v1, w)[h]

= Lωh − εPn�W

(
∂ug(δ, x, v1 + w + v2(δ, v1, w))(h + ∂wv2(δ, v1, w)[h])

)
= Lωh − εPn�W

(
a(t, x) h

)− εPn�W

(
a(t, x) ∂wv2(δ, v1, w)[h]

)
, (72)

where, for brevity, we have set

a(t, x) := ∂ug
(
δ, x, v1(t, x) + w(t, x) + v2(δ, v1, w)(t, x)

)
. (73)

In order to invert Ln, it is convenient to perform a Fourier expansion and represent
the operator Ln as a matrix, distinguishing a diagonal matrix D and an off-diagonal
Toepliz matrix. The main difference with respect to the analogue procedure of Craig
and Wayne [11] and Bourgain [7] is that we develop Ln only in time-Fourier basis
and not also in the spatial fixed basis formed by the eigenvectors sin(jx) of the linear
operator −∂xx . The reason is that this is more convenient to deal with nonlinearities
f (x, u) with finite regularity in x and without oddness assumptions. Each diagonal
element Dk is a differential operator acting on functions of x. Next, using Sturm-
Liouville theory, we diagonalize each Dk in a suitable basis of eigenfunctions close,
but different, from sin jx (see Lemma 4.1, Corollary 4.1).

Performing a time-Fourier expansion, the operator Lω := −ω2∂tt +∂xx is diagonal
since

Lω

( ∑
|k|≤Ln

exp(ikt)hk

)
=
∑

|k|≤Ln

exp(ikt)(ω2k2 + ∂xx)hk. (74)

The operator h → Pn�W (a(t, x) h) is the composition of the multiplication operator
for the function a(t, x) =∑l∈Z exp(ilt)al(x) with the projectors �W and Pn. As usual,
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in Fourier expansion, the multiplication operator is described by a Toepliz matrix

a(t, x) h(t, x) =
∑

|k|≤Ln,l∈Z

exp(ilt)al−k(x)hk(x)

and, recalling (71) and (27),

Pn�W

(
a(t, x) h

) = ∑
|k|,|l|≤Ln

exp(ilt)πl

(
al−k(x)hk

)
=
∑

|k|≤Ln

exp(ikt)πk

(
a0(x)hk

)+ ∑
|k|,|l|≤Ln,k �=l

exp(ilt)πl(al−khk), (75)

where we have distinguished the diagonal term∑
|k|≤Ln

exp(ikt)πk

(
a0(x)hk

) = Pn�W

(
a0(x) h

)
, (76)

with a0(x) := (1/(2π))
∫ 2π

0 a(t, x) dt , from the off-diagonal Toepliz term∑
|k|,|l|≤Ln,k �=l

exp(ilt)πl(al−khk) = Pn�W

(
a(t, x) h

)
, (77)

where

a(t, x) := a(t, x) − a0(x)

has zero time-average.
By (72), (75), (76), and (77), we can decompose

Ln(δ, v1, w) = D − M1 − M2,

where D, M1, M2 are the linear operators
Dh := Lωh − εPn�W

(
a0(x) h

)
,

M1h := εPn�W

(
a(t, x) h

)
,

M2h := εPn�W

(
a(t, x) ∂wv2[h]

)
.

(78)

To invert Ln, we first (step 1) prove that, assuming the first-order Melnikov
nonresonance condition δ ∈ �

γ,τ
n (v1, w) (see Definition 3.3), the diagonal (in time)

linear operator D is invertible (see Corollary 4.2). Next (step 2), we prove that the off-
diagonal Toepliz operators M1 (see Lemma 4.8) and M2 (see Lemma 4.9) are small
enough with respect to D, yielding the invertibility of the whole Ln. (Note that we
do not decompose the term M2 in a diagonal and off-diagonal term.) More precisely,
the crucial bounds of Lemma 4.5 enable us to prove via Lemma 4.6 that the operator
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|D|−1/2M1|D|−1/2 has a small norm, whereas the norm of |D|−1/2M2|D|−1/2 is
controlled thanks to the regularizing properties of the map v2.

4.2. Step 1: Inversion of D

The first aim is to diagonalize (both in time and space) the linear operator D (see
Corollary 4.1).

By (74) and (76), the operator D is yet diagonal in time-Fourier basis, and
∀ h ∈ W (n), the kth time Fourier coefficient of Dh is

(Dh)k = (ω2k2 + ∂xx)hk − επk

(
a0(x)hk

) ≡ Dkhk,

where Dk : D(Dk) ⊂ Fk → Fk is the operator

Dku = ω2k2u − Sku and Sku := −∂xxu + επk

(
a0(x) u

)
.

Note that Sk = S−k .
We now have to diagonalize (in space) each Sturm-Liouville type operator Sk and

study its spectral properties.
In Lemma 4.1 we find a basis of eigenfunctions vk,j of Sk : D(Sk) ⊂ Fk → Fk

which are orthonormal for the scalar product of Fk ,

〈u, v〉ε :=
∫ π

0
uxvx + εa0(x)uv dx.

For |ε||a0|∞ < 1, 〈 , 〉ε actually defines a scalar product on Fk ⊂ H 1
0 ((0, π); R), and

its associated norm is equivalent to the H 1-norm defined by ‖u‖2
H 1 := ∫ π

0 u2
x(x) dx

since

‖u‖2
H 1 (1 − |ε| |a0|∞) ≤ ‖u‖2

ε ≤ ‖u‖2
H 1 (1 + |ε| |a0|∞), ∀u ∈ Fk. (79)

Formula (79) follows from∗ ∫ π

0 u(x)2 dx ≤ ∫ π

0 ux(x)2 dx, ∀u ∈ H 1
0 (0, π), and∣∣∣ ∫ π

0
εa0(x)u2 dx

∣∣∣ ≤ |ε| |a0|∞
∫ π

0
u2 dx.

LEMMA 4.1 (Sturm-Liouville)
The operator Sk : D(Sk) ⊂ Fk → Fk possesses a 〈 , 〉ε-orthonormal basis
(vk,j )j≥1,j �=|k| of eigenvectors with positive, simple eigenvalues

0 < λk,1 < · · · < λk,|k|−1 < λk,|k|+1 < · · · < λk,j < · · · with lim
j→∞

λk,j = +∞

and λk,j = λ−k,j , v−k,j = vk,j .
Moreover, (vk,j )j≥1,j �=|k| is an orthogonal basis also for the L2-scalar product

in Fk .

∗This is because the least eigenvalue of −∂xx with Dirichlet boundary conditions on (0, π) is 1.
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The asymptotic expansion as j → +∞ of the eigenfunctions ϕk,j := vk,j /

‖vk,j‖L2 of Sk and its eigenvalues λk,j is

∣∣∣ϕk,j −
√

2

π
sin(jx)

∣∣∣
L2

= O
(ε|a0|∞

j

)
and

λk,j = λk,j (δ, v1, w) = j 2 + εM(δ, v1, w) + O
(ε‖a0‖H 1

j

)
, (80)

where M(δ, v1, w), introduced in Definition 3.1, is the mean value of a0(x) on (0, π).

The proof of this lemma is in the appendix. We note that we do not directly apply
some known result for Sturm-Liouville operators because of the projection πk .

By Lemma 4.1, each linear operator Dk : D(Dk) ⊂ Fk → Fk possesses a 〈 , 〉ε-
orthonormal basis (vk,j )j≥1,j �=|k| of real eigenvectors with real eigenvalues (ω2k2 −
λk,j )j≥1,j �=|k|.

As a consequence, we have the following.

COROLLARY 4.1 (Diagonalization of D)
The operator D (acting in W (n)) is the diagonal operator diag{ω2k2 − λk,j } in the
basis {cos(kt)ϕk,j ; k ≥ 0, j ≥ 1, j �= k} of W (n).

By Lemma 4.1,

min
|k|≤Ln

|ω2k2 − λk,j | → +∞ as j → +∞,

and so, by Corollary 4.1, the linear operator D is invertible if and only if all its
eigenvalues {ω2k2 − λk,j }|k|≤Ln,j≥1,j �=|k| are different from zero.

In this case, we can define D−1 as well as |D|−1/2 : W (n) → W (n) by

|D|−1/2h :=
∑

|k|≤Ln

exp(ikt)|Dk|−1/2hk, ∀h =
∑

|k|≤Ln

exp(ikt)hk,

where |Dk|−1/2 : Fk → Fk is the diagonal operator defined by

|Dk|−1/2vk,j := vk,j√|ω2k2 − λk,j |
, ∀j ≥ 1, j �= |k|. (81)

The “small denominators” problem (i) is that some of the eigenvalues of D,
ω2k2 − λk,j , can become arbitrarily small for (k, j ) ∈ Z2 sufficiently large, and
therefore the norm of |D|−1/2 can become arbitrarily large as Ln → ∞.
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In order to quantify this phenomenon, we define for all |k| ≤ Ln,

αk := min
j �=|k|

|ω2k2 − λk,j |. (82)

Note that α−k = αk .

LEMMA 4.2
Suppose that αk �= 0. Then Dk is invertible and, for ε small enough,

‖|Dk|−1/2u‖H 1 ≤ 2√
αk

‖u‖H 1 . (83)

Proof
For any u = ∑j �=|k| ujvk,j ∈ Fk , by (81), and using the fact that (vk,j )j �=|k| is an
orthonormal basis for the 〈 , 〉ε scalar product on Fk ,

‖|Dk|−1/2u ‖2
ε =
∥∥∥ ∑

j �=|k|

uj vk,j√|ω2k2 − λk,j |
∥∥∥2

ε

=
∑
j �=|k|

|uj |2
|ω2k2 − λk,j | ≤ 1

αk

∑
j �=|k|

|uj |2 = ‖u‖2
ε

αk

.

Hence, since by (79) the norms ‖ · ‖ε and ‖ · ‖H 1 are equivalent, (83) follows (for ε

small enough). �

The condition αk �= 0, ∀|k| ≤ Ln, depends very sensitively on the parameters (δ, v1).
Assuming the first-order Melnikov nonresonance condition δ ∈ �

γ,τ
n (v1, w) (see

Definition 3.3) with τ ∈ (1, 2), we obtain, in Lemma 4.3, a lower bound of the form
cγ /|k|τ−1 for the moduli of the eigenvalues of Dk (namely, αk ≥ cγ /|k|τ−1) and,
therefore, in Corollary 4.2, sufficiently good estimates for the inverse of D.

LEMMA 4.3 (Lower bound for the eigenvalues of D)
There is c > 0 such that if δ ∈ �

γ,τ
n (v1, w)∩[0, δ0) and δ0 is small enough (depending

on γ ), then

αk := min
j≥1,j �=|k|

|ω2k2 − λk,j | ≥ c γ

|k|τ−1
> 0, ∀ 0 < |k| ≤ Ln. (84)

Moreover, α0 ≥ 1/2.
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Proof
Since α−k = αk , it is sufficient to consider k ≥ 0. By the asymptotic expansion (80)
for the eigenvalues λk,j , using that ‖a0‖H 1 , |M(δ, v1, w)| ≤ C,

|ω2k2 − λk,j | =
∣∣∣ω2k2 − j 2 − εM(δ, v1, w) + O

(ε‖a0‖H 1

j

)∣∣∣
=
∣∣∣(ωk−

√
j 2+εM(δ, v1, w)

)(
ωk+
√

j 2+εM(δ, v1, w)
)+O
( |ε|

j

)∣∣∣
≥
∣∣∣ωk − j − ε

M(δ, v1, w)

2j
+ O
( ε2

j 3

)∣∣∣ωk − C
|ε|
j

≥
∣∣∣ωk − j − ε

M(δ, v1, w)

2j

∣∣∣ ωk − C ′
(ε2k

j 3
+ |ε|

j

)
≥ γωk

(k + j )τ
− C
(ε2k

j 3
+ |ε|

j

)
(85)

since δ ∈ �
γ,τ
n (v1, w). If αk := minj≥1,j �=k |ω2k2 − λk,j | is attained at j = j (k) (i.e.,

αk = |ω2k2 −λk,j |), then |ωk − j | ≤ 1 (provided that |ε| is small enough). Therefore,
using that 1 < τ < 2 and |ω − 1| ≤ 2|ε|, we can derive (84) from (85), for |ε| small
enough. �

COROLLARY 4.2 (Estimate of |D|−1/2)
If δ ∈ �

γ,τ
n (v1, w) ∩ [0, δ0) and δ0 is small enough, then D : D(D) ⊂ W (n) → W (n)

is invertible and, ∀s ′ ≥ 0,

‖|D|−1/2h‖σ,s ′ ≤ C√
γ

‖h‖σ,s ′+(τ−1)/2, ∀h ∈ W (n). (86)

Proof
Since |D|−1/2h :=∑|k|≤Ln

exp(ikt)|Dk|−1/2hk , we get, using (83) and (84),

‖|D|−1/2h‖2
σ,s ′ =

∑
|k|≤Ln

exp(2σ |k|)(1 + k2s ′
)‖|Dk|−1/2hk‖2

H 1

≤
∑

|k|≤Ln

exp(2σ |k|)(1 + k2s ′
)

4

αk

‖hk‖2
H 1

≤ 8‖h0‖2
H 1 + C

∑
0<|k|≤Ln

exp(2σ |k|)(1 + k2s ′
)
|k|(τ−1)

γ
‖hk‖2

H 1

≤ C ′

γ
‖h‖2

σ,s ′+(τ−1)/2,

proving (86). �
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4.3. Step 2: Inversion of Ln

To show the invertibility of Ln : W (n) → W (n), it is a convenient device to write

Ln = D − M1 − M2 = |D|1/2(U − R1 − R2)|D|1/2,

where

U := |D|−1/2D|D|−1/2 = |D|−1D

and

Ri := |D|−1/2Mi |D|−1/2, i = 1, 2.

We prove the invertibility of U − R1 − R2 showing that, for ε small enough, R1 and
R2 are small perturbations of U .

LEMMA 4.4 (Estimate of ‖U−1‖)
U : W (n) → W (n) is an invertible operator, and its inverse U−1 satisfies, ∀s ′ ≥ 0,

‖U−1h‖σ,s ′ = ‖h‖σ,s ′
(
1 + O(ε‖a0‖H 1 )

)
, ∀ h ∈ W (n). (87)

Proof
Since Uk := |Dk|−1Dk : Fk → Fk is orthogonal for the 〈 , 〉ε scalar product, it is
invertible and ∀u ∈ Fk, ‖U−1

k u‖ε = ‖u‖ε. Hence, by (79),

∀u ∈ Fk, ‖U−1
k u‖H 1 = ‖u‖ε

(
1 + O(ε‖a0‖H 1 )

)
.

Therefore U = |D|−1D, defined by (Uh)k = Ukhk , ∀ |k| ≤ Ln, U is invertible,
(U−1h)k = U−1

k hk , and (87) holds. �

The estimate of the off-diagonal operator R1 : W (n) → W (n) requires a careful analysis
of the “small divisors” and the use of the first-order Melnikov nonresonance condition
δ ∈ �

γ,τ
n (v1, w) (see Definition 3.3). For clarity, we state such a property separately.

LEMMA 4.5 (Analysis of the “small divisors”)
Let δ ∈ �

γ,τ
n (v1, w) ∩ [0, δ0) with δ0 small. There exists C > 0 such that, ∀l �= k,

1

αkαl

≤ C
|k − l|2(τ−1)/β

γ 2|ε|τ−1
, where β := 2 − τ

τ
. (88)

Proof
To obtain (88), we distinguish different cases.
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First case: |k − l| ≥ (1/2)[max(|k|, |l|)]β . Then (αkαl)−1 ≤ C|k − l|2(τ−1)/β/γ 2.
Indeed, we can estimate both αk , αl with the lower bound (84), αk ≥ cγ /|k|τ−1,
αl ≥ cγ /|l|τ−1. Using the fact that 0 < β < 1, we obtain

1

αkαl

≤ C
|k|τ−1|l|τ−1

γ 2
≤ C

[max(|k|, |l|)]2(τ−1)

γ 2
≤ C ′ |k − l|2(τ−1)/β

γ 2
.

In the other cases, we have 0 < |k − l| < (1/2)[max(|k|, |l|)]β . We observe that in this
situation, sign(l) = sign(k), and to fix the ideas, we assume in the sequel that l, k ≥ 0.
(The estimate for k, l < 0 is the same since αkαl = α−kα−l .) Moreover, since β ≤ 1,
we have max(k, l) = k or l − k ≤ (1/2)lβ ≤ (1/2)l. Hence l ≤ 2k; similarly, k ≤ 2l.

Second case: 0 < |k − l| < (1/2)[max(|k|, |l|)]β and (|k| ≤ 1/3|ε| or |l| ≤ 1/3|ε|).
Then (αkαl)−1 ≤ C/γ . Suppose, for example, that 0 ≤ k ≤ 1/3|ε|. We claim that if
ε is small enough, then αk ≥ (k + 1)/8. Indeed, ∀j �= k,

|ωk − j | = |ωk − k + k − j | ≥ |k − j | − |ω − 1| |k| ≥ 1 − 2|ε| k ≥ 1

3
.

Therefore ∀1 ≤ k < 1/3|ε|, ∀j �= k, j ≥ 1, |ω2k2 − j 2| = |ωk − j | |ωk + j | ≥
(ωk + 1)/3 ≥ (k + 1)/6, and so

αk := min
j≥1,k �=j

|ω2k2 − λk,j | = min
j≥1,k �=j

∣∣∣ω2k2 − j 2 − εM(δ, v1, w) + O
(ε‖a0‖H 1

j

)∣∣∣
≥ k + 1

6
− |ε| C ≥ k + 1

8
.

Next, we estimate αl . If 0 ≤ l ≤ 1/3|ε|, then αl ≥ 1/8 and therefore (αkαl)−1 ≤ 64.
If l > 1/3|ε|, we estimate αl with the lower bound (84), and so, since l ≤ 2k and
1 < τ < 2,

1

αkαl

≤ C
lτ−1

kγ
≤ C ′

k2−τ γ
≤ C ′

γ
.

In the remaining cases, we consider |k − l| < (1/2)[max(|k|, |l|)]β and both |k|, |l| >

1/3|ε|. We have to distinguish two subcases. For this, ∀k ∈ Z, let j = j (k) ≥ 1 be
an integer such that αk := minn �=|k| |ω2k2 − λk,n| = |ω2k2 − λk,j |. Analogously, let
i = i(k) ≥ 1 be an integer such that αl = |ω2l2 − λl,i |.

Third case: 0 < |k − l| < (1/2)[max(|k|, |l|)]β , |k|, |l| > 1/3|ε|, and k − l = j − i.
Then (αkαl)−1 ≤ C/γ |ε|τ−1. Indeed, |(ωk − j ) − (ωl − i)| = |ω(k − l) − (j − i)| =
|ω − 1||k − l| ≥ |ε|/2, and therefore |ωk − j | ≥ |ε|/4 or |ωl − i| ≥ |ε|/4. Assume,
for instance, that |ωk − j | ≥ |ε|/4. Then |ω2k2 − j 2| = |ωk − j | |ωk + j | ≥ |ε|ωk/
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2 ≥|ε|(1 − 2|ε|)k/2, and so, for ε small enough, |αk| ≥ |ε|k/4. Hence, since l ≤ 2k

and k > 1/3|ε|,
1

αkαl

≤ C
lτ−1

γ |ε|k ≤ C

γ k2−τ |ε| ≤ C

γ |ε|τ−1
.

Fourth case: 0 < |k − l| < (1/2)[max(k, l)]β , k, l > 1/3|ε|, and k − l �= j − i. Then
(αkαl)−1 ≤ C/γ 2. Using the fact that ω is γ -τ -Diophantine, we get

|(ωk−j ) − (ωl−i)| = |ω(k − l) − (j−i)| ≥ γ

|k − l|τ ≥ Cγ

[max(k, l)]βτ
≥ C

2

( γ

kβτ
+ γ

lβτ

)
,

so that |ωk − j | ≥ Cγ/2kβτ or |ωl − i| ≥ Cγ/2lβτ . Therefore |ω2k2 − j 2| ≥
C ′γ k1−βτ = C ′γ kτ−1 since β := (2 − τ )/τ . Hence, for ε small enough, αk ≥
C ′γ kτ−1/2. We estimate αl with the worst possible lower bound, and so, using also
l ≤ 2k, we obtain

1

αkαl

≤ Clτ−1

γ 2kτ−1
≤ C

γ 2
.

Collecting the estimates of all the previous cases, (88) follows. �

Remark 4.1
The analysis of the “small divisors” in the second, third, and fourth cases of
Lemma 4.5 corresponds, in the language of [11], to the property of separation of
the singular sites.

LEMMA 4.6 (Bound of an off-diagonal operator)
Assume that δ ∈ �

γ,τ
n (v1, w) ∩ [0, δ0), and let, for some s ′ ≥ s, b(t, x) ∈ Xσ,s ′+(τ−1)/β

satisfy b0(x) = 0; that is, let
∫ 2π

0 b(t, x) dt ≡ 0, ∀x ∈ (0, π). Define the operator
Tn : W (n) → W (n) by

Tnh := |D|−1/2Pn�W

(
b(t, x) |D|−1/2h

)
.

There is a constant C̃, independent of b(t, x) and of n, such that

‖Tnh‖σ,s ′ ≤ C̃

|ε|(τ−1)/2γ
‖b‖σ,s ′+(τ−1)/β‖h‖σ,s ′, ∀h ∈ W (n).

Proof
For h ∈ W (n), we have (Tnh)(t, x) =∑|k|≤Ln

(Tnh)k(x) exp(ikt), with

(Tnh)k = |Dk|−1/2πk(b |D|−1/2h)k = |Dk|−1/2πk

[ ∑
|l|≤Ln

bk−l|Dl|−1/2hl

]
. (89)
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Set Bm := ‖bm(x)‖H 1 . From (89) and (83), using the fact that B0 := ‖b0(x)‖H 1 = 0,

‖(Tnh)k‖H 1 ≤ C
∑

|l|≤Ln,l �=k

Bk−l√
αk

√
αl

‖hl‖H 1 . (90)

Hence, by (88),

‖(Tnh)k‖H 1 ≤ C

γ |ε|(τ−1)/2 sk, where sk :=
∑

|l|≤Ln

Bk−l|k − l|(τ−1)/β‖hl‖H 1 . (91)

By (91), setting s̃(t) :=∑|k|≤Ln
sk exp (ikt) (with s−k = sk),

‖Tnh‖2
σ,s ′ =

∑
|k|≤Ln

exp(2σ |k|)(k2s ′ + 1)‖(Tnh)k‖2
H 1

≤ C2

γ 2|ε|τ−1

∑
|k|≤Ln

exp(2σ |k|)(k2s ′ + 1)s2
k = C2

γ 2|ε|τ−1
‖̃s‖2

σ,s ′ . (92)

It turns out that s̃ = Pn(̃b̃c ), where b̃(t) := ∑l∈Z |l|(τ−1)/βBl exp(ilt) and c̃(t) :=∑
|l|≤Ln

‖hl‖H 1 exp(ilt). Therefore, by (92) and since s ′ > 1/2,

‖Tnh‖σ,s ′ ≤ C

γ |ε|(τ−1)/2 ‖̃b̃c‖σ,s ′ ≤ C

γ |ε|(τ−1)/2 ‖̃b‖σ,s ′ ‖̃c‖σ,s ′

≤ C

γ |ε|(τ−1)/2 ‖b‖σ,s ′+(τ−1)/β‖h‖σ,s ′

since ‖̃b‖σ,s ′ ≤ ‖b‖σ,s ′+(τ−1)/β and ‖̃c‖σ,s ′ = ‖h‖σ,s ′ . �

Before proving the smallness of the off-diagonal operator R1 and of R2, we need the
following preliminary lemma, which gives a suitable estimate of the multiplicative
function a(t, x).

LEMMA 4.7
There are µ > 0, δ0 > 0, and C > 0 with the following property: if ‖v1‖0,s ≤ 2R,
[w]σ,s ≤ µ, and δ ∈ [0, δ0), then ‖a‖σ,s+2(τ−1)/β ≤ C.

Proof
By Definition 3.2 of [w]σ,s , there are hi ∈ W (i), 0 ≤ i ≤ q, and a sequence (σi)0≤i≤q

with σi > σ such that w = h0 + h1 + · · · + hq and

q∑
i=0

‖hi‖σi ,s

(σi − σ )2(τ−1)/β
≤ 2[w]σ,s ≤ 2µ. (93)
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An elementary calculus, using the fact that maxk≥1 kα exp{−(σi − σ )k} ≤ C(α)/
(σi − σ )α , gives

‖hi‖σ,s+2(τ−1)/β ≤ C(τ )
‖hi‖σi ,s

(σi − σ )2(τ−1)/β
. (94)

Hence, by (93) and (94),

‖w‖σ,s+2(τ−1)/β ≤
q∑

i=0

‖hi‖σ,s+2(τ−1)/β ≤
q∑

i=0

C(τ )
‖hi‖σi ,s

(σi − σ )2(τ−1)/β
≤ C(τ )2µ.

By Lemma 2.1(d), provided δ0 is small enough, also ‖v2(δ, v1, w)‖σ,s+2(τ−1)/β ≤ C ′,
and therefore

‖a‖σ,s+2(τ−1)/β = ∥∥(∂ug)
(
δ, x, v1 + w + v2(δ, v1, w)

)∥∥
σ,s+2(τ−1)/β ≤ C.

This bound is a consequence of the analyticity assumption (H) on the nonlinearity f ,
the Banach algebra property of Xσ,s+2(τ−1)/β , and can be obtained as in (22). �

LEMMA 4.8 (Estimate of R1)
Under the hypotheses of (P3), there exists a constant C > 0 depending on µ such that

‖R1h‖σ,s+(τ−1)/2 ≤ |ε|(3−τ )/2 C

γ
‖h‖σ,s+(τ−1)/2, ∀h ∈ W (n).

Proof
Recalling the definition of R1 := |D|−1/2M1|D|−1/2 and M1, and using Lemma 4.6
since a(t, x) has zero time-average,

‖R1h‖σ,s+(τ−1)/2

= ‖ |D|−1/2M1|D|−1/2h‖σ,s+(τ−1)/2 = |ε|
∥∥∥|D|−1/2Pn�W (a |D|−1/2h)

∥∥∥
σ,s+(τ−1)/2

≤ |ε| C̃

|ε|(τ−1)/2γ
‖a‖σ,s+(τ−1)/2+(τ−1)/β‖h‖σ,s+(τ−1)/2 ≤ |ε|(3−τ )/2 C̃

γ
‖a‖σ,s+2(τ−1)/β‖h‖σ,s+(τ−1)/2

≤ |ε|(3−τ )/2 C

γ
‖h‖σ,s+(τ−1)/2

since 0 < β < 1 and, by Lemma 4.7, ‖a‖σ,s+2(τ−1)/β ≤ ‖a‖σ,s+2(τ−1)/β ≤ C. �

The smallness of R2 := |D|−1/2M2|D|−1/2 with respect to U is just a consequence
of Lemma 4.7 and of the regularizing property of ∂wv2 : Xσ,s → Xσ,s+2 proved in
Lemma 2.1. By (86), the loss of τ − 1 derivatives due to |D|−1/2 applied twice is
compensated by the gain of two derivatives due to ∂wv2 : Xσ,s → Xσ,s+2.
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LEMMA 4.9 (Estimate of R2)
Under the hypotheses of (P 3), there exists a constant C > 0 depending on µ such that

‖R2h‖σ,s+(τ−1)/2 ≤ C
|ε|
γ

‖h‖σ,s+(τ−1)/2, ∀h ∈ W (n).

Proof
By (86) and the regularizing estimate ‖∂wv2[u]‖σ,s+2 ≤ C‖u‖σ,s of Lemma 2.1, we
get

‖R2h‖σ,s+(τ−1)/2 ≤ C√
γ

‖M2|D|−1/2h‖σ,s+τ−1

= C
|ε|√
γ

∥∥Pn�W

(
a ∂wv2[|D|−1/2h]

)∥∥
σ,s+τ−1

≤ C
|ε|√
γ

‖a‖σ,s+τ−1

∥∥∂wv2[|D|−1/2h]
∥∥

σ,s+τ−1

≤ C ′ |ε|√
γ

‖a‖σ,s+τ−1

∥∥∂wv2[|D|−1/2h]
∥∥

σ,s+2

≤ C
|ε|√
γ

‖a‖σ,s+τ−1‖|D|−1/2h‖σ,s ≤ C ′ |ε|
γ

‖h‖σ,s+(τ−1)/2

since τ < 3 and, by Lemma 4.7, ‖a‖σ,s+τ−1 ≤ ‖a‖σ,s+2(τ−1)/β ≤ C. �

Proof of property (P 3) completed
Under the hypothesis of (P3), the linear operator U is invertible by Lemma 4.4 and,
by Lemmas 4.9 and 4.8, provided that δ is small enough,

‖U−1R1‖σ,s+(τ−1)/2, ‖U−1R2‖σ,s+(τ−1)/2 <
1

4
.

Therefore also the linear operator U − R1 − R2 is invertible, and its inverse satisfies

‖(U − R1 − R2)−1h‖σ,s+(τ−1)/2 = ‖(I − U−1R1 − U−1R2)−1U−1h‖σ,s+(τ−1)/2

≤ 2‖U−1h‖σ,s+(τ−1)/2 ≤ C‖h‖σ,s+(τ−1)/2, ∀h ∈ W (n).

(95)

(96)

Hence Ln is invertible, L−1
n = |D|−1/2(U − R1 − R2)−1|D|−1/2 : W (n) → W (n),

and by (86), (95),

‖L−1
n h‖σ,s = ‖|D|−1/2(U − R1 − R2)−1|D|−1/2h‖σ,s

≤ C√
γ

‖(U − R1 − R2)−1|D|−1/2h‖σ,s+(τ−1)/2

≤ C ′
√

γ
‖|D|−1/2h‖σ,s+(τ−1)/2 ≤ C ′′

γ
‖h‖σ,s+τ−1 ≤ C ′′

γ
(Ln)τ−1‖h‖σ,s

because h ∈ W (n). This completes the proof of property (P3). �
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5. Solution of the (Q1)-equation
Once the (Q2) and (P )-equations are solved (with gaps for the latter), the last step is
to find solutions of the finite-dimensional (Q1)-equation

− �v1 = �V1 G(δ, v1), (97)

where

G(δ, v1)(t, x) := g
(
δ, x, v1(t, x) + w̃(δ, v1)(t, x) + v2(δ, v1, w̃(δ, v1))(t, x)

)
.

We are interested in solutions (δ, v1) which belong to the Cantor set B∞.

5.1. The (Q1)-equation for δ = 0
For δ = 0, the (Q1)-equation (97) reduces to

− �v1 = �V1 G(0, v1) = s∗�V1

(
ap(x)(v1 + v2(0, v1, 0))p

)
, (98)

which is the Euler-Lagrange equation of �0 : B(2R, V1) → R,

�0(v1) := �0
(
v1 + v2(0, v1, 0)

)
, (99)

where �0 : V → R is defined in (12).
In fact, since v2(0, v1, 0) solves the (Q2)-equation (for δ = 0, w = 0), d�0(v1 +

v2(0, v1, 0))[k] = 0, ∀k ∈ V2. Moreover, since ∀h ∈ V1, Dv1v2(0, v1, 0)[h] ∈ V2,

d�0(v1)[h] = d�0
(
v1 + v2(0, v1, 0)

)[
h + Dv1v2(0, v1, 0)[h]

]
= d�0

(
v1 + v2(0, v1, 0)

)
[h]

=
∫




[− �v1 − s∗�V1

(
ap(x)(v1 + v2(0, v1, 0))

)p]
h. (100)

Hence v1 is a critical point of �0 if and only if it is a solution of equation (98).

LEMMA 5.1
Let v be the nondegenerate solution of equation (11) introduced in Theorem 1.2. Then
v1 := �V1v ∈ B(R; V1) is a nondegenerate solution of (98).

Proof
By Lemma 2.1(b), �V2v = v2(0, v1, 0). Hence, since v solves (11), v1 solves (98).
Now assume that h1 ∈ V1 is a solution of the linearized equation at v1 of (98). This
means

− �h1 = s∗�V1

(
pap(x)(v1 + v2(0, v1, 0))p−1(h1 + h2)

)
, (101)
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where h2 := Dv1v2(0, v1, 0)[h1] ∈ V2. Now, by the definition of the map v2, we have

−�v2(0, v1, 0) = s∗�V2

(
ap(x)(v1 + v2(0, v1, 0))p

)
, ∀v1 ∈ B(2R,V1),

from which we derive, taking the differential at v1,

− �h2 = s∗�V2

(
pap(x)(v1 + v2(0, v1, 0))p−1(h1 + h2)

)
. (102)

Summing (101) and (102), we obtain that h = h1 + h2 is a solution of the linearized
form at v of equation (11). Since v is a nondegenerate solution of (11), h = 0; hence
h1 = 0. As a result, v1 = �V1v is a nondegenerate solution of (98). �

5.2. Proof of Theorem 1.2
By assumption, v is a nondegenerate solution of equation (11). Hence, by Lemma

5.1, v1 = �V1v ∈ B(R,V1) is a nondegenerate solution of (98).
Since the map (δ, v1) → −�v1 − �V1 G(δ, v1) is in C∞([0, δ0) × V1; V1), by the

implicit function theorem there is a C∞-path

δ �→ v1(δ) ∈ B(2R, V1)

such that v1(δ) is a solution of (97) and v1(0) = v1.
By Theorem 3.1, the function

ũ(δ) := δ
[
v1(δ) + v2

(
δ, v1(δ), w̃(δ, v1(δ))

)+ w̃
(
δ, v1(δ)

)] ∈ Xσ/2,s (103)

is a solution of equation (3) if δ belongs to the Cantor-like set

C := {δ ∈ [0, δ0)
∣∣ (δ, v1(δ)

) ∈ B∞
}
.

By Proposition 3.2, the smoothness of v1(·) implies that the Cantor set C has full
density at the origin (i.e., satisfies the measure estimate (4)).

Finally, by (103), since v = v1 + v2(0, v1, 0),

‖̃u(δ) − δv‖σ/2,s

= δ
∥∥(v1(δ) − v1

)+ (v2(δ, v1(δ), w̃(δ, v1(δ))) − v2(0, v1, 0)
)+ w̃
(
δ, v1(δ)

)∥∥
σ/2,s

≤ δ
(‖v1(δ) − v1‖σ/2,s + ∥∥v2(δ, v1(δ), w̃(δ, v1(δ))) − v2(0, v1, 0)

∥∥
σ/2,s

+ ‖w̃(δ, v1(δ))‖σ/2,s

) = O(δ2)

by (57).
This proves Theorem 1.2 in the case when v is nondegenerate in the whole

space V .
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Now, we can look for (2π/n)-time-periodic solutions of (3) as well. (They are partic-
ular 2π-periodic solutions.) Let

Xσ,s,n :=
{
u ∈ Xσ,s

∣∣∣u is
2π

n
time-periodic

}
= Vn ⊕ Wn,

where Vn (defined in (14)) and Wn are the subspaces of V and W formed by the
functions (2π/n)-periodic in t .

Introducing an appropriate finite-dimensional subspace V1,n ⊂ Vn, we split Vn =
V1,2 ⊕ V2,n, and we obtain associated (Q1)-, (Q2)-, (P )-equations as in (15).

With the arguments of Sections 2 and 3, we can solve the (Q2)- and (P )-equations
exactly as in the case where n = 1.

The zeroth-order bifurcation equation is again equation (11) but in Vn, and the
corresponding functional is just the restriction of �0 to Vn.

The main assumption of Theorem 1.2 (that at least one of the critical points of
(�0)|Vn

, called v, is nondegenerate) allows us to find a C∞-path δ �→ v1(δ) ∈ V1,n of
solutions of equation (97).

As above, this implies the conclusions of Theorem 1.2. �

6. Proof of Theorem 1.1
For this section we define the linear map Hn : V → V by

for v(t, x) = η(t + x) − η(t − x) ∈ V, (Hnv)(t, x) := η
(
n(t + x)

)− η
(
n(t − x)

)
so that Vn = HnV .

6.1. Case f (x, u) = a3(x)u3 + O(u4)
LEMMA 6.1
Let 〈a3〉 := (1/π)

∫ π

0 a3(x) �= 0. Taking s∗ = sign〈a3〉, ∃ n0 ∈ N such that ∀n ≥ n0,
the zeroth-order bifurcation equation (16) has a solution v ∈ Vn which is nondegen-
erate in Vn.

Proof
Equation (16) is the Euler-Lagrange equation of

�0(v) = ‖v‖2
H 1

2
− s∗
∫




a3(x)
v4

4
. (104)

The functional �n(v) := �0(Hnv) has the following development: for v(t, x) =
η(t + x) − η(t − x) ∈ V we obtain, using the fact that

∫



v4 = ∫



(Hnv)4,

�n(v) = 2πn2
∫

T
η̇2(t) dt − s∗〈a3〉

∫



v4

4
− s∗
∫




(
a3(x) − 〈a3〉

) (Hnv)4

4
.
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We choose s∗ = sign〈a3〉 so that s∗〈a3〉 > 0. To simplify notation, take 〈a3〉 > 0 so
that s∗ = 1,

�n

( √
2n√〈a3〉

v
)

= 8πn4

〈a3〉
[1

2

∫
T

η̇2(s) ds− 1

8π

∫



v4+ 1

8π

∫



(a3(x)

〈a3〉 −1
)

(Hnv)4 dt dx
]

= 8πn4

〈a3〉 [�(η) + Rn(v)],

where

�(η) := 1

2

∫
T

η̇2(s) ds − 1

4

∫
T

η4(s) ds − 3

8π

( ∫
T

η2(s) ds
)2

,

Rn(v) := 1

8π

∫



b(x)(Hnv)4 dt dx, b(x) := a3(x)

〈a3〉 − 1.

Let E := {η ∈ H 1(T) | η is odd}. It is enough to prove that � : E → R has a
nondegenerate critical point η and that Rn is small for large n (see Lemma 6.2).
Indeed, the operator � ′′(η) has the form Id + Compact, so that if its kernel is zero,
then � ′′(η) is invertible. Hence, by the implicit function theorem, for n large enough,
�n too (hence �0|Vn

) has a nondegenerate critical point.
The critical points of � in E are the 2π-periodic odd solutions of

η̈ + η3 + 3〈η2〉η = 0. (105)

By [2] it is known that there exists a solution of (105) which is a nondegenerate critical
point of � in E. It remains to prove Lemma 6.2. �

LEMMA 6.2
There holds

‖DRn(v)‖, ‖D2Rn(v)‖ → 0 as n → +∞ (106)

uniformly for v in bounded sets of E.

Proof
We prove the estimate only for D2Rn. We have

D2Rn(v)[h, k] = 3

2π

∫



b(x)(Hnv)2(Hnh) (Hnk) = 3

2π

∫ π

0
b(x)g(nx) dx,
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where g(y) is the π-periodic function defined by

g(y) :=
∫

T

(
η(t + y) − η(t − y)

)2(
β(t + y) − β(t − y)

)(
γ (t + y) − γ (t − y)

)
dt,

β and γ being associated with h and k as η is with v. Developing in Fourier series
g(y) = ∑l∈Z gl exp(i2ly), we have g(nx) = ∑l∈Z gl exp(i2lnx). Extending b(x) to
a π-periodic function, we also write b(x) = ∑l∈Z bl exp(i2lx) with b0 = 〈b〉 = 0.
Therefore

|D2Rn(vn)[h, k]|

= 3

2

∣∣∣∑
l �=0

glb−ln

∣∣∣ ≤ 3

2

(∑
l �=0

g2
l

)1/2(∑
l �=0

b2
ln

)1/2
≤ 3

2
‖g‖L2(0,π )

(∑
l �=0

b2
ln

)1/2

≤ C‖η‖2
∞‖β‖∞‖γ ‖∞

(∑
l �=0

b2
ln

)1/2
≤ C‖v0‖2

H 1‖h‖H 1‖k‖H 1

(∑
l �=0

b2
ln

)1/2
.

Since
(∑

l �=0 b2
ln

)1/2 → 0 as n → ∞, it proves (106). With a similar calculus, we can
prove that DRn(v) → 0 as n → +∞. �

6.2. Case f (x, u) = a2u
2 + O(u4)

With the frequency-amplitude relation (17), system (7) with p = 2 becomes{−�v = −δ−1�V gδ(x, v + w), (Q)
Lωw = δ�Wgδ(x, v + w), (P )

(107)

where

gδ(x, u) = f (x, δu)

δ2
= a2u

2 + δ2a4(x)u4 + · · · . (108)

With the further rescaling

w → δw

and since v2 ∈ W , system (107) is equivalent to{
−�v = �V

(−2a2vw − a2δw
2 − δr(δ, x, v + δw)

)
, (Q)

Lωw = a2v
2 + δ�W

(
2a2vw + δa2w

2 + δr(δ, x, v + δw)
)
, (P )

(109)

where r(δ, x, u) = δ−4(f (x, δu) − a2δ
2u2) = a4(x)u4 + · · · .

For δ = 0, system (109) reduces to{−�v = −2a2�V (vw),
Lw = a2v

2,
(110)
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where L := −∂tt + ∂xx , and it is equivalent to w = a2L
−1v2, −�v =

−2a2
2�V (vL−1v2), namely, to the zeroth-order bifurcation equation (18).

LEMMA 6.3
If a2 �= 0, ∃ n0 ∈ N such that ∀n ≥ n0, the zeroth-order bifurcation equation (18) has
a solution v ∈ Vn which is nondegenerate in Vn.

Proof
We have to prove that �n(v) := �0(Hnv), where �0 is defined in (19), possesses
nondegenerate critical points at least for n large.

�n admits the following development (see [5, Lemmas 3.7, 3.8]). For v(t, x) =
η(t + x) − η(t − x),

�n(v) = 2πn2
∫

T
η̇2(t) dt − π2a2

2

12

( ∫
T

η2(t) dt
)2

+ a2
2

2n2

(∫



v2L−1v2 + π2

6

( ∫
T

η2(t) dt
)2
)

.

Hence we can write

�n

(√12n√
πa2

v
)

= 48n4

a2
2

[1
2

∫
T

η̇2(s) ds − 1

4

( ∫
T

η2(s) ds
)2

+ 1

n2
R(η)
]

= 48n4

a2
2

[
�(η) + 1

n2
R(η)
]
, (111)

where

�(η) = 1

2

∫
T

η̇2(s) ds − 1

4

( ∫
T

η2(s) ds
)2

and R : E → R is a smooth functional defined on E := {η ∈ H 1(T) | η odd}. By
(111), in order to prove that �n has a nondegenerate critical point for n large enough,
it is enough to prove the following lemma. �

LEMMA 6.4
� : E → R possesses a nondegenerate critical point.

Proof
The critical points of � in E are the 2π-periodic odd solutions of the equation

η̈ +
( ∫

T
η2(t) dt

)
η = 0. (112)

Equation (112) has a 2π-periodic solution of the form η̄(t) = (1/
√

π ) sin t .
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We claim that η̄ is nondegenerate. The linearized equation of (112) at η̄ is

ḧ + h + 2

π

( ∫
T

sin t h(t) dt
)

sin t = 0. (113)

Developing in time-Fourier series h(t) =∑k≥1 ak sin kt , we find out that any solution
of the linearized equation (113) satisfies

−k2ak + ak = 0, ∀k ≥ 2, a1 = 0

and therefore h = 0. �

As in Theorem 1.2, the existence of a solution v of the zeroth-order bifurcation
equation which is nondegenerate in some Vn entails the conclusions of Theorem 1.2.
To avoid cumbersome notation, we still give the main arguments assuming that n = 1.

Since for δ = 0 the solution of the (P )-equation in (110) is w = a2L
−1v2, it is

convenient to perform the change of variable

w = a2L
−1v2 + y, y ∈ W. (114)

System (109) is then written{−�v = −2a2
2�V (vL−1v2) + �V

(−2a2vy − a2δw
2 − δr(δ, x, v + δw)

)
, (Q′)

Lωy = 2a2δ
2R(v2) + δ�W

(
2a2vw + δa2w

2 + δr(δ, x, v + δw)
)
, (P ′)

(115)

where w is a function of v and y through (114), and the linear operator in W ,

R := (1 − ω2)−1(I − LωL−1) = (2δ2)−1(I − LωL−1),

does not depend on ω and can be expressed as

R
(∑

l �=j

wl,j cos(lt) sin(jx)
)

=
∑
l �=j

l2

l2 − j 2
wl,j cos(lt) sin(jx).

Since l2|l2 − j 2|−1 = l2|l + j |−1|l − j |−1 ≤ |l|, the operator R satisfies the estimate

∀w ∈ W, ‖Rw‖σ,s ≤ ‖w‖σ,s+1. (116)

Splitting V = V1 ⊕ V2, the (Q′)-equation is divided in two parts: the (Q′1)- and
(Q′2)-equations.

Setting

R := ‖v‖0,s ,

the analogue of Lemma 2.1 is the following.
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LEMMA 6.5
There exist N ∈ N+, σ = ln 2/N > 0, δ0 > 0, such that, ∀ 0 ≤ σ ≤ σ , ∀ ‖v1‖0,s ≤
2R, ∀ ‖y‖σ,s ≤ 1, ∀ δ ∈ [0, δ0), there exists a unique solution v2(δ, v1, y) ∈ V2 ∩ Xσ,s

of the (Q′2)-equation with ‖v2(δ, v1, y)‖σ,s ≤ 1. Moreover, v2(0,�V1v, 0) = �V2v,
v2(δ, v1, y) ∈ Xσ,s+2, and the regularizing property

‖Dwv2(δ, v1, y)[h]‖σ,s+2 ≤ C‖h‖σ,s (117)

holds, where C is some positive constant.

Substituting v2 = v2(δ, v1, y) into the (P ′)-equation yields

Lωy = δ�(δ, v1, y) := δ�̃
(
δ, v1 + v2(δ, v1, y), y

)
, (118)

where

�̃(δ, v, y) := 2δa2R(v2) + �W

(
2a2v(a2L

−1(v2) + y) + δa2(a2L
−1(v2) + y)2

+ δr(δ, x, v + δ(a2L
−1(v2) + y))

)
.

The (P ′)-equation (118) can be solved as in Sections 3 and 4 with slight changes that
we specify.

THEOREM 6.1 (Solution of the (P ′)-equation)
For δ0 > 0 small enough, there exists a C∞-function ỹ : [0, δ0) × B(2R, V1) →
W ∩ Xσ/2,s satisfying ỹ(0, v1) = 0, ‖̃y‖σ/2,s = O(δ), ‖Dkỹ‖σ/2,s = O(1), and
verifying the following property. Let

B∞ :=
{

(δ, v1) ∈ [0, δ0) × B(2R, V1) :
∣∣∣ω(δ)l − j − δ

M(δ, v1, ỹ(δ, v1))

2j

∣∣∣≥ 2γ

(l + j )τ
,

|ω(δ)l − j | ≥ 2γ

(l + j )τ
, ∀l ≥ 1

3δ2
, l �= j

}
,

where ω(δ) = √
1 − 2δ2 and M(δ, v1, y) is defined in (119). Then ∀(δ, v1) ∈ B∞,

ỹ(δ, v1) solves the (P ′)-equation (118).

Proof
As before, the key point is the inversion, at each step of the iterative process, of a
linear operator

Ln(δ, v1, y)[h] = Lωh − δPn�WDy�(δ, v1, y)[h], h ∈ W (n).
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We have

Dy�(δ, v1, y)[h]

=Dy�̃
(
δ, v1 + v2(δ, v1, y), y

)
[h] + Dv�̃

(
δ, v1 + v2(δ, v1, y), y

)
Dyv2(δ, v1, y)[h]

and, as it can be directly verified,

Dy�̃(δ, v, y)[h] = �W

(
(∂ugδ)(x, v + δw)h

)
,

where gδ is defined in (108) and w is given by (114). As in Section 4, setting a(t, x) :=
(∂ugδ)(x, v(t, x)+δw(t, x)), we can decompose Ln(δ, v1, y) = D−M1−M2, where
(with the notation of Section 4)

Dh := Lωh − δPn�W

(
a0(x)h

)
,

M1h := δPn�W

(
a(t, x)h

)
,

M2h := δPn�WDv�̃
(
δ, v1 + v2(δ, v1, y), y

)
Dyv2(δ, v1, y)[h].

As in Lemma 4.1, the eigenvalues of the similarly defined operator Sk satisfy λk,j =
j 2 + δM(δ, v1, y) + O(δ/j ), where

M(δ, v1, y) := 1

|
|
∫




(∂ugδ)
(
x, v1 + v2(δ, v1, y) + δw(t, x)

)
dx dt,

w = a2L
−1(v2) + y. (119)

The bounds for the operator D (see Lemma 4.3, Corollary 4.2) still hold, assuming an
analogous nonresonance condition, and we can define in the same way the operators
U, R1, R2, with ‖U−1h‖σ,s ′ = (1+O(δ))‖h‖σ,s ′ . With the same arguments, we obtain
for R1 the bound

‖R1h‖σ,s+(τ−1)/2 ≤ δ2−τ C

γ
‖h‖σ,s+(τ−1)/2,

which is enough since τ < 2.
For the estimate of R2, the most delicate term to deal with is

δ2|D|−1/2DyF |D|−1/2, where

F (δ, v1, y) := R
(
(v1 + v2(δ, v1, y))2)

because the operator R induces a loss of regularity (see (116)). However, again the
regularizing property (117) of the map v2 enables us to obtain the bound

‖R2h‖σ,s+(τ−1)/2 ≤ C
δ

γ
‖h‖σ,s+(τ−1)/2. (120)
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The key point is that the loss of (τ − 1) derivatives due to |D|−1/2 applied
twice, added to the loss of one derivative due to R in (116), is compensated by
the gain of two derivatives with v2, whenever τ < 2. Let us enter briefly into
details:

‖DyF (δ, v1, y)[h]‖σ,s+1 = ∥∥2R
(
(v1 + v2)Dyv2(δ, v1, y)[h]

)∥∥
σ,s+1

≤ 2‖(v1 + v2)Dyv2(δ, v1, y)[h]‖σ,s+2

≤ C‖(v1 + v2)‖σ,s+2‖Dyv2(δ, v1, y)[h]‖σ,s+2

≤ K(N,R, ‖y‖σ,s)‖h‖σ,s

by the regularizing property (117) of v2. We can then derive (120) as in the proof of
Lemma 4.9, using the fact that τ < 2. �

Finally, inserting ỹ(δ, v1) in the (Q1′)-equation, we get

− �v1 = G(δ, v1), (121)

where

G(0, v1) := −�V1

(
2a2(v1 + v2(0, v1, 0))L−1(v1 + v2(0, v1, 0))2

)
.

As in Section 5.2, since �0 : V → R possesses a nondegenerate critical point
v, the equation −�v1 = G(0, v1) has the nondegenerate solution v1 := �V1v ∈
B(R,V1), and by the implicit function theorem, there exists a smooth path δ �→
v1(δ) ∈ B(2R, V1) of solutions of (121) with v1(0) = v. As in Proposition 3.2, this
implies that the set C = {δ ∈ (0, δ0) | (δ, v1(δ)) ∈ B∞} has asymptotically full measure
at zero. �

A. Appendix

LEMMA A.1
If q is an even integer, then∫




a(x)vq(t, x) dt dx = 0, ∀v ∈ V ⇐⇒ {
a(π − x) = −a(x), ∀x ∈ [0, π]

}
.

If q ≥ 3 is an odd integer, then∫



a(x)vq(t, x) dt dx = 0, ∀v ∈ V ⇐⇒ {a(π − x) = a(x), ∀x ∈ [0, π]
}
.
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Proof
We first assume that q = 2s is even. If a(π − x) = −a(x) ∀x ∈ (0, π), then for all
v ∈ V , ∫




a(x)v2s(t, x) dt dx =
∫




a(π − x)v2s(t, π − x) dt dx

=
∫




−a(x)
(−v(t + π, x)

)2s
dt dx

= −
∫




a(x)v2s(t, x) dt dx,

and so
∫



a(x)v2s(t, x) dt dx = 0.
Now assume that �(v) := ∫



a(x)v2s(t, x) dt dx = 0, ∀v ∈ V . Writing that D2s� =

0, we get ∫



a(x)v1(t, x) · · · v2s(t, x) dt dx = 0, ∀(v1, . . . , v2s) ∈ V 2s .

Choosing v2s(t, x) = v2s−1(t, x) = cos(lt) sin(lx), we obtain

1

4

∫



a(x)v1(t, x) · · · v2(s−1)(t, x)
(

cos(2lt) + 1
)(

1 − cos(2lx)
)
dt dx = 0.

Taking limits as l → ∞, there results
∫



a(x)v1(t, x) · · · v2(s−1)(t, x) dt dx = 0,
∀(v1, . . . , v2(s−1)) ∈ V 2(s−1). Iterating this operation, we finally get

∀(v1, v2) ∈ V 2,

∫



a(x)v1(t, x)v2(t, x) dt dx = 0, and
∫ π

0
a(x) dx = 0.

Choosing v1(t, x) = v2(t, x) = cos(lt) sin(lx) in the first equality, we derive that∫ π

0 a(x) sin2(lx) dx = 0. Hence ∀l ∈ N,
∫ π

0 a(x) cos(2lx) dx = 0. This implies that
a is orthogonal in L2(0, π) to F = {b ∈ L2(0, π) | b(π − x) = b(x) a.e.}. Hence
a(π − x) = −a(x) a.e., and since a is continuous, the identity holds everywhere.

We next assume that q = 2s + 1 is odd, q ≥ 3. The first implication is derived
in a similar way. Now assume that

∫



a(x)vq(t, x) dt dx = 0, ∀v ∈ V . We can prove
exactly as in the first part that

∀(v1, v2, v3) ∈ V 3,

∫



a(x)v1(t, x)v2(t, x)v3(t, x) dt dx = 0.

Choosing v1(t, x) = cos(l1t) sin(l1x), v2(t, x) = cos(l2t) sin(l2x), v3(t, x) = cos((l1 +
l2)t) sin((l1 + l2)x), and using the fact that

∫ 2π

0 cos(l1t) cos(l2t) cos((l1 + l2)t) dt �= 0,



416 BERTI and BOLLE

we obtain∫ π

0
a(x)[sin2(l1x) sin(l2x) cos(l2x) + sin2(l2x) sin(l1x) cos(l1x)] dx

=
∫ π

0
a(x) sin(l1x) sin(l2x) sin

(
(l1 + l2)x

)
dx = 0.

(122)

Letting l2 go to infinity and taking limits, (122) yields
∫ π

0 (1/2)a(x) sin(l1x)
cos(l1x) dx = 0. Hence

∫ π

0 a(x) sin(2lx) = 0, ∀l > 0. This implies that, in
L2(0, π), a is orthogonal to G = {b ∈ L2(0, π) | b(π − x) = −b(x) a.e.}. Hence
a(π − x) = a(x), ∀x ∈ (0, π). �

Proof of Lemma 4.1
Let Kk(ε) = S−1

k (ε) be the self-adjoint compact operator of Fk defined by

〈Kk(ε)u, v〉ε = (u, v)L2, ∀u, v ∈ Fk.

(In other words, Kk(ε)u is the unique weak solution z ∈ Fk of Skz := u.)
Note that Kk(ε) is a positive operator, that is, 〈Kk(ε)u, u〉ε > 0, ∀u �= 0, and note

that Kk(ε) is also self-adjoint for the L2-scalar product.
By the spectral theory of compact self-adjoint operators in Hilbert spaces, there is

a 〈 , 〉ε-orthonormal basis (vk,j )j≥1,j �=k of Fk such that vk,j is an eigenvector of Kk(ε)
associated to a positive eigenvalue νk,j (ε); the sequence (νk,j (ε))j is nonincreasing
and tends to zero as j → +∞. Each vk,j (ε) belongs to D(Sk) and is an eigenvector
of Sk with associated eigenvalue λk,j (ε) = 1/νk,j (ε), with (λk,j (ε))j≥1 → +∞ as
j → +∞.

The map ε �→ Kk(ε) ∈ L(Fk, Fk) is differentiable, and K ′
k(ε) = −Kk(ε)MKk(ε),

where Mu := πk(a0u).
For u =∑j �=k αjvk,j (ε) ∈ Fk ,

〈u, u〉ε =
∑
j �=k

|αj |2 and (u, u)L2 =
∑
j �=k

|αj |2
λk,j (ε)

.

As a consequence,

λk,j (ε) = min
{

max
u∈F,‖u‖L2 =1

〈u, u〉ε; F subspace of Fk of dimension j (if j < k),

j − 1 (if j > k)
}
. (123)

It is clear by inspection that λk,j (0) = j 2 and that we can choose vk,j (0) =√
2/π sin(jx)/j . Hence, by (123), |λk,j (ε) − j 2| ≤ |ε| ‖a0‖∞ < 1, from which

we derive

∀l �= j, |λk,l(ε) − λk,j (ε)| ≥ (l + j ) − 2 ≥ 2 min(l, j ) − 1 (≥ 1). (124)
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In particular, the eigenvalues λk,j (ε) (νk,j (ε)) are simple. By the variational character-
ization (123), we also see that λk,j (ε) depends continuously on ε, and we can assume,
without loss of generality, that ε �→ vk,j (ε) is a continuous map to Fk .

Let ϕk,j (ε) :=√λk,j (ε)vk,j (ε); (ϕk,j (ε))j �=k is an L2-orthogonal family in Fk , and

∀ε,

{
Kk(ε)ϕk,j (ε) = νk,j (ε)ϕk,j (ε),(
ϕk,j (ε), ϕk,j (ε)

)
L2 = 1.

We observe that the L2-orthogonality with respect to ϕk,j (ε) is equivalent to the 〈 , 〉ε-
orthogonality with respect to ϕk,j (ε), and we observe that Ek,j (ε) := [ϕk,j (ε)]⊥ is
invariant under Kk(ε). Using the fact that Lk,j := (Kk(ε)−νk,j (ε)I )|Ek,j (ε) is invertible,
it is easy to derive from the implicit function theorem that the maps (ε �→ νk,j (ε)) and
(ε �→ ϕk,j (ε)) are differentiable.

Denoting by P the orthogonal projector onto Ek,j (ε), we have

ϕ′
k,j (ε) = L−1

(−PK ′
k(ε)ϕk,j (ε)

) = L−1
(
PKkMKkϕk,j (ε)

)
= νk,j (ε)L−1KkPMϕk,j (ε),

ν ′
k,j (ε) = (K ′

k(ε)ϕk,j (ε), ϕk,j (ε)
)
L2 = −(KkMKkϕk,j (ε), ϕk,j (ε)

)
L2

= −(MKkϕk,j (ε),Kkϕk,j (ε)
)
L2 = −ν2

k,j (ε)
(
Mϕk,j (ε), ϕk,j (ε)

)
L2 . (125)

We have

νk,jL
−1Kk

(∑
l �=j

αlvk,l

)
=
∑
l �=j

νk,j νk,l

νk,l − νk,j

αlvk,l =
∑
l �=j

αl

λk,j − λk,l

vk,l .

Hence, by (124), |νk,jL
−1KkPu|L2 ≤ |u|L2/j . We obtain |ϕ′

k,j (ε)|L2 = O(|a0|∞/j ).
Hence ∣∣∣ϕk,j (ε) −

√
2

π
sin(jx)

∣∣∣
L2

= O
(ε|a0|∞

j

)
.

Hence, by (125),

λ′
k,j (ε) = (Mϕk,j (ε), ϕk,j (ε)

)
L2 =
∫ π

0
a0(x)(ϕk,j )2 dx

= 2

π

∫ π

0
a0(x)
(
sin(jx)

)2
dx + O

(ε|a0|2∞
j

)
.

Writing sin2(jx) = (1 − cos(2jx))/2, and since
∫ π

0 a0(x) cos(2jx) dx =
− ∫ π

0 (a0)x(x) sin(2jx)/2j dx, we get

λ′
k,j (ε) = 1

π

∫ π

0
a0(x) dx + O

(‖a0‖H 1

j

)
= M(δ, v1, w) + O

(‖a0‖H 1

j

)
.
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Hence λk,j (ε) = j 2 + εM(δ, v1, w) + O(ε‖a0‖H 1/j ), which is the first estimate in
(80). �
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